

Hybrid Rice Seed Production

Prepared By

Ali El-Saied Sharief

Faculty of Agriculture Mansoura University, Egypt

How Hybrid Rice?

Normal Rice Spikelet (self pollinated crop)

Sterile Rice Spikelet (Male Sterility)

Hybrid Seed Production (Male Sterile x Normal Rice)

What is Hybrid rice?

- It was reported by jones(1926) but the successful development is made by chinese during 1970's.
- A Hybrid rice variety, also referred to as the F₁, is the direct product of crossing two genetically different parents.
- In hybrids, the positive qualities of both parents are combined resulting in a phenomenon called "hybrid vigor" or "heterosis.
- These factors result in higher yields than ordinary rice(inbreds).

Why Hybrid Rice?

- > Heterosis (Hybrid vigor) Application to Increase:
 - Productivity (yield/unit/time, 15-20% of yield advantage), and
 - Economic returns
- > Heterosis
 - ✓ A universal phenomenon that F1 generation shows superiority to both parents in agronomic traits or yield
 - ✓ It presents in all biological systems and has been exploited commercially in many agricultural crops.

Importance of Hybrid rice:

- More and more rice to be produced on less land and with less inputs.
- Rice hybrids have shown 15-20% higher yield potential than inbred rice varieties under farmers' field conditions.
- Hybrids have shown their ability to perform better under adverse conditions of drought and salinity.

Production of Seed for Hybrid Rice

Two techniques

1.Two line system

2. Three line syste

However three line is successful.
It involves three lines they were

- 1. A line(male sterile line)
- 2. B line(maintainer line)
- 3. R line(restorer line)

A*B=A

A*R=R

A line	R line
male characters were suppressed	fertile
small	tall

Male Sterility Systems in Rice

- ➤ Male sterility: a condition in which the pollen grain is unviable or cannot germinate and fertilize normally to set seeds.
- ➤ Male Sterility Systems (genetic and non-genetic):
 - ✓ Cytoplasmic genetic male sterility (CMS)

 Male sterility is controlled by the interaction of a genetic factor (S) present in the cytoplasm and nuclear gene (s).
 - ✓ Environment-sensitive genic male sterility (EGMS)

 Male sterility system is controlled by nuclear gene expression, which is influenced by environmental factors such as temperature (TGMS), daylength (PGMS), or both (TPGMS).
 - ✓ Chemically induced male sterility

 Male sterility is induced by some chemicals (gametocides)

Advantage & Disadvantage of 3-line hybrid rice system

- > Advantages
 - **✓ Stable male sterility**
- Disadvantages
 - ✓ Limit germplasm source (CMS, Restorer)
 - ✓ Dominant CMS cytoplasm in large area (WA)
 - **✓** One more step for parental seed production
 - **✓ Time consuming of CMS breeding**

Advantage & Disadvantage of 2-line hybrid rice system

> Advantages

- ✓ Simplified procedure of hybrid seed production
- ✓ Multiple and diverse germplasm available as parents
 - ✓ Any line could be bred as female
 - ✓97% (2-line) vs 5% (3-line) of germplasm as male
- ✓ Increased chance of developing desirable & heterotic hybrids
- ✓ Multiple cytoplasm courses as female parents

Disadvantages

✓ Environmental effect on sterility could cause seed purity problem

Hybrid Heterosis in Rice

Indica x japonica

Hybrid Rice Seed Production

In Asia

In United Sates

Future Opportunity:

Improve agronomic management and deployment strategy

ShanYou 63 grown under different nitrogen management (S. Peng, IRRI)

The common Practice

- Transplanting young seedlings (less than 14 days old).
- Careful transplanting of single seedlings per hill.
- Transplanting in a square pattern, preferably with 25 x 25 cms spacing.
- Emphasis on organic fertilizers.
- Weeding through weeders to increase aeration as well as weed control.
- Alternate wetting and drying up to the panicle initiation stage through irrigation by way of a thin film of standing water.

Mat Nursery:

S prinkling water (up to 5th day)

Modified Rice Mat Nursery

(km cmdn)

Benefits

- Improvement in yield.
- More tillers will produced.
- Seed requirement reduced.
- Decrease in environmental pollution through lowered use of chemical fertilizers and agrochemicals.
- Substantial water savings.

