أمثلة تطبيقية لحساب معدل اداء (انتاجية) الآلات الزراعية

<u>مثال ۱ :</u>

محراث قلاب مطرحی ٥ أبدان عرض البدن ٣٥ سنتيمتر وسرعة الجرار اثناء اجراء عملية الحرث ٣٠ كم / ساعة وكفاءة عملية الحرث ٨٠% احسب معدل أداء الآلة (فدان / ساعة)

العرض(م) \times السرعة (م/الساعة) \times الكفاءة الحقلية معدل الأداء (فدان / الساعة) = -

 \sim ۱۰۰۰ \times ۲۰۰۰ \times ۱۰۰۰ \times دان/الساعة =

<u>مثال ۲ :</u>

في المثال السابق احسب كلا من:

- ۱ معدل الاداء النظرى ومعدل الاداء الفعلى (اذا كان العرض الفعلى للمحراث ٩,٠ من العرض النظرى)
- ٢- الزيادة في الكفاءة الحقلية عند زيادة طول الحقل الى ٢ كم اذا كان طوله ٨٠٠ م (
 مساحة الارض ٨٠ فدان)
- ٣- معدل أداء الحرث عندما يكون طول الحقل ٨٠٠ وعندما يكون طوله ٢ كم علما بأن المساحة المراد حرثها (٨٠ فدان والعرض الفعلى للحرث ٩٠,٠ من العرض النظرى وزمن الاصلاح والتركيب في الحقل ٥% من زمن الحرث الفعلى وزمن الدوران ٢٠ ثانية / اللفة

أ) حساب معدل الأداء النظرى ومعدل الأداء الفعلى:

عرض الحرث النظرى (م) = ٥ × ٥٩,٠ = ١,٧٥ متر عرض الحرث الفعلى (م) =
$$0.000$$
 متر

معدل الأداء (فدان / الساعة) =
$$-0$$
, الساعة -0 فدان / ساعة -0

ب) حساب الزيادة في المكفاءة الحقلية

اذا كان طول الحقل (٢٨٠٠)

عرض الحقل اذا کان طوله (۸۰۰م)
$$=$$
 \times ۲۰۰ عرض الحقل اذا کان طوله (۸۰۰م)

$$7. \times 7.$$
 ساعة) = $-$ زمن الدوران (ساعة) = $-$. $-$.

زمن الحرث الكلى = زمن الحرث الفعلى + زمن الاصلاحات + زمن الدوران =
$$77.00 + 7.90 + 7.90 + 7.90$$

وعند زیادة طول الحقل الی (Υ) کیلو متر أی طول الحقل = Υ ۰۰۰ متر زمن الحرث الفعلی لمساحة (Λ) فدان) = Υ , ۰۰۰ ساعة کما فی الجزء السابق من المثال زمن الحرث النظری لمساحة (Λ) فدان (Λ) فدان (Λ) ساعة کما فی الجزء السابق من المثال زمن الاصلاحات لمساحة (Λ) فدان (Λ) فدان المتغیر فی هذه الحالة هو زمن الدوران وذلك بناء علی تغییر طول الحقل وبالتالی بتغییر عرض الحقل و فق الآتی :

$$\sim$$
 عرض الحقل اذا کان طوله $(\sim 1.7) = \sim 1.7$ متر :. عرض الحقل اذا کان طوله

 $^{\circ}$.. الزيادة في الكفاءة الحقلية = $^{\circ}$ ۸٤,۸۰ + $^{\circ}$ $^{\circ}$ $^{\circ}$

ج) حساب معدل أداء الحرث (انتاجية المحراث الفعلية) عندما يكون طول الحقل : ٨٠٠

متر ، ٢ كم

.. معدل الأداء الفعلى عندما يكون طول الحقل ٨٠٠ م

معدل الأداء الفعلى عندما يكون طول الحقل ٢ كم

مشط قرصى مزدوج عرضه ٥ أمتار وسرعة التمشيط به ٦ كم / ساعة فاذا كانت الكفاءة الحقلية ٨٠% احسب

- أ) انتاجية المشط (فدان / ساعة)
- ب) احسب الزمن اللازم لتمشيط مساحة قدرها ١٥٠ فدان

أ) الانتاجية = السرعة × العرض × الكفاءة

مثال ٤:

مقطورة لنثر السماد العضوى طول صندورقها ٣م وعرضه ١,٥ م وارتفاعها ٢٠٠ م استعملت لتسميد مزرعة بمعدل ٢٤ متر مكعب / فدان وكان عرض النثر ١,٣ على كل جانب من جوانب الالة فاذا كان زمن التعبئة لهذه الآلة ٦ دقائق لكل مرة احسب الزمن اللازم لتسميد مساحة قدرها ٣٠٠ فدان علما بأن سرعة الآلة ٥ كم / ساعة زمن الدوران الكلى ٩,٣٣ ساعة للمساحة المذكورة

الحل

العرض الفعلى = عرض الآلة + الزيادة على الجانبين = 0.1 + (1.7.7) = 1.3م العرض الفعلى = عرض الآلة + الزيادة على الجانبين = 0.7.0.0 المسافة المقطوعة لنثر المساحة 0.7.0.0 المسافة المقطوعة لنثر المساحة 0.7.0.0

حجم الصندوق = طول × عرض × ارتفاع = $0.7. \times 0.7. \times 0.7.$

كمية السماد اللازم للفدان × المساحة عدد مرات التعبئة = حجم الصندوق

۲۲۰۰×۲۶ = ۳۰۰×۲۶ مرة = ۲۲۲۸ = ۲۲۲ مرة

رمن التعبئة = ______ = ۲۲٫۷ ساعة _____

الزمن اللازم لتسميد (٣٠٠ فدان) = زمن النثر النظرى + زمن التعبئة + زمن الدوران

$$= 0,000$$
 ساعة 0.000 ساعت 0.000 ساعت وباعتبار يوم العمل ۸ ساعات 0.000 فدان 0.000 0.000 خدد أيام التسميد لمساحة 0.000 فدان 0.000 فدان 0.000

مثال ٥:

آلة زراعة تؤدى عملها بسرعة ٥ كم / الساعة وبعرض فعلى ٢,١ م كفاءة حقيقة ٨٠% احسب الزمن اللازم لزراعة ١٢٠ فدان بالساعات

معدل الأداء (فدان/ ساعة) =
$$\frac{1...\times0...\times0...}{1...\times0...}$$
 = $\frac{1...\times0...\times0...}{1...\times0...\times0...}$ المساحة الذمن اللازم لزراعة (۱۲۰ فدان) =
$$\frac{1...\times0...\times0...\times0...}{1...\times0...\times0...\times0...\times0...}$$
 المساعة معدل الأداء / الساعة

مثال ٦

احسب الزمن اللازم لعزق ٢٥٠ فدان اذا كانت سرعة العزق ٨ كم / ساعة وتجرى بين خطوط نباتات المسافة بينها ٦٠ سم وتتركب الآلة من ٥ وحدات عزق علما بأن الكفاءة الحقلبة ٨٠%

الزمن اللازم لعزق (٥٠٠فدان) = ٢٥٠ ÷ ٧,٦٨ = ٥٤,٧ ساعة

مثال ٧:

احسب الوقت اللازم بالساعات لرى مساحة 0.0 فدان اذا كان تـصريف المـضخة 1,70 م 7 / ثانية والاحتياجات المائية 7.7 م 7 / فدان في الرية الواحدة 1.6 المطلوبة إذا كان الضاغط 1.6

التصريف (م الساعة) المصنخة = المصنخة = المصنخة (متر /ساعة) المساحة المروية (فدان /ساعة) المصنخة المصن

المساحة الكلية (فدان) = المساحة الكلية (فدان) الزمن الكلى اللازم لرى (٥٠٠ فدان) = المساحة المروية (فدان / ساعة)

ساعة ٣٥,٥٦ = ١٤,٠٦ ÷ ٥٠٠ =

مثال ۸

رشاشة تقوم برش أشجار بساتين وتمر على ١٤ شجرة فى الدقيقة احسب سرعة الآلة (كم / ساعة) اذا كانت المسافة بين الاشجار ٥,٥ م ثم احسب الوقت اللازم لرش ١٠٠ فدان من هذا البستان اذا كانت الآلة ترش الاشجار على الجانبين مع فرض ان الكفاءة الحقلية 7.% والاشجار مزروعة على رؤوس مربعات

0,0×7.×1£

اتساع الرش (م) =
$$7 \times 1$$
 المسافة بين كل شجرتين = $7 \times 0.0 \times 1$ م

الوقت اللازم لرش (۱۰۰فدان) = ۱۰۰ ÷ ۱۲٫۷ = ۱۳٫۸۷ ساعة مثال $\frac{9}{4}$

آلة حصاد ودراس وتذرية عرضها ٥ م والوقت الــــلازم لتفريـــغ الحبــوب ٣,٥ دقيقــة لمحصول الفدان ووقت الدوران والضبط والاصلاح ١٠% من وقت التشغيل الفعلى ومتوسط عرض القطع الفعلى ٨٥% من العرض النظرى وسرعة التشغيل ٤,٥ كم/ساعة احسب

أ- الزمن الكلى اللازم لحصاد ٣٠٠ فدان

ب-الانتاجية الحقلية الفعلية للآلة

ت-الكفاءة الحقلية للآلة

$$7.0 \times 7.0$$
 ساعة الحبوب = $\frac{7.0}{1.0}$

الانتاجية الحقلية الفعلية (فدان/ساعة) =
$$...$$
 $...$ $...$ $...$ $...$ $...$ فدان / ساعة الانتاجية الحقلية النظرية (فدان/ساعة) = $(0 \times 0.3 \times 0.0.0) \div 0.7$ فدان/ساعة الكفاءة الحقلية = $(0.0.0.0.0.0) \div 0.0.0$

بعض من المعادلات الرياضية لحساب السعة الحقلية للآلات و الكفاءة الحقلية

Approach 1

$$C = \frac{1}{A+B}$$

$$A = \frac{10}{sw} = (h/ha)$$

$$B = \frac{2.8P}{W.M} + (F2+F3+F4+F5+f6+F7)\frac{10}{sw} + \frac{VU}{60D}(h/ha)$$

A= time spent actually performing the specific operation (hr/ha)

B= time used for support activities, row end turning and other delays (hr/ha)

S= machine ground speed, (km/hr)

P= Average time per turn

M= Row length, m

F2-F7= coefficients

V= Time for round trips barn to field and return required to complete the field operation

D= hectares in the field.

U= number of round trips, barn to field and return, min

W= Machine width, m

Example

Firm data

- 1- Planter, 4-row tractor mounted
 - 2- Row spacing, 1.02 m
 - 3- Ground speed, 6.7 km/hr
 - 4- seeding rate, 18.3 kg/ha
 - 5- Fertilizer rate, 350 kg/ha
 - 6- pre-emergence spray rate, 75L/ha
 - 7- Time per turn(av.), 12s
 - 8- Row length (av), 310m
 - 9- field size, 15 ha

Estimation data

- 1- Adding seed coefficient, f2=0.04
- 2- Adding fertilizer coefficient, f3=0.12
- 3- Adding spray chemicals coefficient, f4=0.08
- 4- Adjustment coefficient, f5=0.04
- 5- Idle field travel coefficient, f6=0.04

$$A = \frac{10}{6.7x4.08} = 0.36(h/ha)$$

$$B = \frac{2.8x12}{4.08x310} + (0.04 + 0.12 + 0.08 + 0.04 + 0.04) \frac{10}{6.7x4.08} = 0.04(h/ha)$$

$$T = 0.36 + 0.14 = 0.5 h/hr$$

$$C = \frac{1}{0.50} = 2.4 ha/hr$$

Approach 2

$$e = \frac{K.T_P}{T_P + T_h + T_a}$$

Where

Tp=Theoretical time for operation (Primary activity)

Th=Time loss proportional to Tp (Any obstacles, turning, addition of chemicals, seeds, manure etc....)

Ta= Time loss proportional to area (rest stops, adjusting, checking the equipment etc....)

K= implement width utilization, decimal

Approach 3

$$Fc = \frac{1}{(T_1 + T_2)}$$

where

T1=The actual time of operation per feddan

T2= The total travel time per feddan

$$T_1 = \frac{4.2}{w.s} + 1.\frac{1.166t_t}{w.L} + \frac{4.2}{ws}(f1 + f2 + f3 + f4 + f5)$$

where

tt= Time lost in turning at end of field, sec/turn

w= Actual width of machine, m

s= Operational speed in the field, km/hr

L= length of field,m

F1 - f5 = as mentioned before

$$T_2 = \frac{T_1(2D_{s)}}{S_t T_a - 2D_s + D_f} + \frac{(T_a - T_1 A)D_f}{A(S_t T_a - 2D_s + D_f)}$$

where

Ds=distance between the service station and the field, km

Df= average distance traveled between fields, km

St= travel speed, km/hr

Ta= available time in one day, hr

المساحة التي تغطيها الآلة في يوم واحد يمكن حسابها كما يلي

$$A_{d} = \frac{(T_{a}S_{t} - 2D_{s} + D_{f})A}{T_{1}AS_{t} + D_{f}}$$

مثال على الة تسطير

عدد الأنابيب = ٢٠

المسافة بين كل أنبوبتين=٥٠ سم

عرض الألة= ٣ متر

الوقت الضائع في الدوران= ٢٥ ثانية/لفة

المساحة الكلية = ٥ فدان

النسبة بين طول الحقل إلى عرضه = ٣

الوقت الفعلى لأداء العمل = ١٤ دقيقة / فدان

وقت الدوران = ٢,٣٢٤ دقيقة / فدان

وقت الدعم = ٢,٠٧٢ دقيقة /فدان

الوقت الفعلى للأداء = ٢٠٣٠، سعة / فدان

السعة الحقلية الفعلية = ٣,٢٦٢ فدان / ساعة

الكفاءة الحقلية = ٢٦,١٠٤ %

المسافة بين الجراج والحقل = ٥ كم

المسافة بين الحقول = ٣ كم

سرعة الإنتقال = ١٠ كم / ساعة

وقت العمل المتاح في اليوم = ١٠ ساعات

الوقت الضائع في التنقل ١,١٤٣ ساعة / يوم

إذن المساحة التي تؤديها الآلة في اليوم ٢٨,٨٨٧ فدان / يوم