

Agric. Eng. Dept. 3<sup>rd</sup> level exam Final Exam. 2013/2014 Hydraulics of Modern **Irrigation Networks** 2<sup>nd</sup> Semester Total Marks: 60

Agric. Eng. Program Irrigation and Drainage Engineering Division Code No. Eng 335 Exam Date: 4/6/2014 Time allowed: Two hours



(15-Marks)

## This exam consists of one page Answer all of the following questions

| Question (1): $(15-Marks)$                                                                         |                                         |
|----------------------------------------------------------------------------------------------------|-----------------------------------------|
| ( A ) Draw the Specific Energy Curve?                                                              | (5-Marks)                               |
| (B) Complete:                                                                                      | <u>(5-Marks</u> )                       |
| 1- Sub-critical Flow Occurs when Depths of flow critical                                           | al depths and                           |
| Froude number is                                                                                   |                                         |
| 2- Supercritical Flow Occurs when the velocity of flow is                                          | *************************************** |
| 3                                                                                                  |                                         |
| (C) Draw Diaphragm (Saunders) Valve?                                                               | (5-Marks)                               |
| Question (2): (20-Marks)                                                                           |                                         |
| (A) Find the pipeline friction head loss using Hazen-Williams equati                               | ion for a 200 m                         |
| long plastic pipe (C = 150) that has an inside diameter of 160.1 mm a                              | nd is to convey                         |
| a water flow rate of 25.0 L/s.                                                                     | (8-Marks)                               |
| (B) A siphon of diameter 200 mm connects two reservoirs having                                     | a difference in                         |
| elevation of 20 m. The length of the siphon is 500m and the summit is                              |                                         |
| water level in the upper reservoir. The length of the pipe from upper                              |                                         |
| summit is 100 m. Determine the discharge through the siphon and a                                  |                                         |
| the summit. Neglect minor losses. The co-efficient of friction, f=0.005                            | (12-Marks)                              |
| Question (3): (25-Marks)                                                                           |                                         |
| (A) In Hardy Cross method, Prove that $\Delta Q = \frac{-\sum r \times Q_0^2}{\sum 2r \times Q_0}$ | (10-Marks)                              |
| (B) The rate of flow of water pumped in to a pipe ABC, which is 20                                 | 00 m long, is 20                        |
| liters/s. The pipe is laid on an upward slope of 1 in 40. The length of the                        | ne portion AB is                        |
| 100 m and its diameter 100 mm, while the length of the portion BC is                               | also 100 m but                          |
| its diameter is 200 mm. The change of diameter at B is sudden. The                                 | e flow is taking                        |
| place from A to C, where the pressure at A is 19.62 N/cm² and end C                                |                                         |
| a tank. Find the pressure at C and draw the hydraulic gradient and to                              | otal energy line.                       |
| Take f=0.008.                                                                                      | (15 Manlan)                             |

With my best wishes

Prof. Dr. Mahmoud Hany Ramadan Dr. Mohamed Maher Ibrahim