

Mansoura University

Faculty of Computers and Information Sciences

Course Specifications of

Knowledge Based Systems to Computer Science – CS011

University: Mansoura University

Faculty: Computer and Information Sciences

Program on which the course is given:

Department offering the course: Department of Computer Science

Academic year/ Level: Fourth Year

Date of specification approval:

A- Basic Information

Title :	Knowled	lge B	ased Systems		Code :	UNI111T	
Credit H	ours :	3	Lecture :	2	Tutorial : 2	Practical :	0

B- Professional Information

1- Overall Aims of the Course This

course aims to:

- This course introduces students to learn how to build expert systems in a variety of application areas.
- Learn the student how knowledge Engineer select the software and hardware tools for the project, extract the necessary knowledge from the Domain Expert and implement the knowledge in a correct and efficient knowledge base.

2- Intended Learning Outcomes of the course (ILOs)

By completing this course successfully, the student will be able to:

a- Knowledge and Understanding

- a1 Essential facts, concepts, principles and theories relating to computing and information and computer applications as appropriate to the program of study.
- a2 Modeling and design of computer-based systems bearing in mind the trade-offs.
- a3 Tools, practices and methodologies used in the specification, design, implementation and evaluation of computer software systems.
- a4 Criteria and specifications appropriate to specific problems, and plan strategies for their solution.
- a6 The current and underlying technologies that support computer processing and inter-computer communication.
- a13 Use high-level programming languages.
- a16 Know and understand the principles and techniques of a number of application areas informed by the research directions of the subject, such as artificial intelligence, natural language processing, data mining, databases and computer graphics.
- a19 Select advanced topics to provide a deeper understanding of some aspects of the subject, such as hardware systems design, object-oriented analysis and design, and artificial intelligence, and parallel and concurrent computing

b- Intellectual Skills

- b1 Analyze computing problems and provide solutions related to the design and construction of computing systems.
- b2 Realize the concepts, principles, theories and practices behind computing and information as an academic discipline.
- b4 Analyze, propose and evaluate alternative computer systems and processes taking into account limitations, and quality constraints.
- b5 Make ideas, proposals and designs using rational and reasoned arguments for presentation of computing systems.

- b11 Perform comparisons between (algorithms, methods, techniques...etc).
- b12 Perform classifications of (data, results, methods, techniques, algorithms..etc.).
- b13 Identify attributes, components, relationships, patterns, main ideas, and errors.
- b14 Summarize the proposed solutions and their results.
- b15 Restrict solution methodologies upon their results.
- b18 Solve computer science problems with pressing commercial or industrial constraints.
- b19 Generate an innovative design to solve a problem containing a range of commercial and industrial constraints.

c- Professional and Practical Skills

- c2 Implement comprehensive computing knowledge and skills in projects and in deployment of computers to solve position practical problems.
- c4 Apply computing information retrieval skills in computing community environment and industry.
- c5 Develop a range of fundamental research skills, through the use of online resources, technical repositories and library-based material
- c10 Communicate effectively by oral, written and visual means.
- c14 Prepare technical reports, and a dissertation, to a professional standard; use IT skills and display mature computer literacy.
- c17 Apply the principles of effective information management, information organization, and information-retrieval skills to information of various kinds, including text, images, sound, and video.
- c21 Prepare technical reports, and a dissertation, to a professional standard.

d- General and Transferable Skills

3- Contents

No	Course Content	Lecture	Tutorial	Total
1	Introduction to : knowledge based expert systems, conventional programming versus knowledge engineering.	4	4	8
2	Human problem solving : Human knowledge Acquisition - the production system as a processing model - problem solving - varieties of knowledge - the nature of expertise.	4	4	8
3	Knowledge Representation issues.	2	2	4
4	Strategies for representing knowledge : Using Predicate Logic - Resolution in Predicate Logic.	2	2	4
5	representing knowledge : Using Rules - Forward and Backward Reasoning.	2	2	4
6	representing knowledge : Using Semanic network.	2	2	4
7	representing knowledge : Using Frames.	2	2	4
8	Uncerainty - Symbolic Reasoning under Uncerainty.	2	2	4
9	Languages and tools : Levels of soaftware, AI language and environments.	2	2	4
10	Building Expert Systems in CLIPS.	2	2	4
	Total Hours	24	24	48

4- Assessment Schedule

Assessment Method	No.	Description	Week No.	Weight (%)
Home work weekly	1	Home work	3	5
in the Computer Lab		weekly in the		
		Computer Lab		
Practical Exam	2	Practical Exam	7	5

Oral Exam and	3	Oral Exam and	10	10
discussion to the		discussion to the		
Term project		Term project		
Mid Term Exam	4	Mid Term Exam	14	20
Final Term Exam	5	Final Term Exam		60
	100			

5- List of references

5.1 Course Notes

- An Introduction to Expert Systems (Knowledge Base)

5.2 Essential Books (Text Books)

- DAN W. PATTERSON, "Artificial Intelligence an Expert Systems " 2004 .
- Peter Jackson, " Introduction to Expert Systems " .
- Robert I. Levine, " A Comprehensive Guide to AI and Expert Systems".

6- Facilities Required for Teaching and Learning -

Data show.

- Speakers for audio and video files used to practice listening.

Course Content/ILO Matrix

Course Content	a1	a3	a6	b1	b2	b4	c2	c4	c5	c13
Introduction to :										
knowledge based										
expert systems,										
conventional		•		•	•	•	•			•
programming versus										
knowledge engineering.										

Human problem solving : Human knowledge Acquisition - the production system as a processing model - problem solving - varieties of knowledge - the nature of expertise.	•		•				•	•		
Knowledge Representation issues.	•		•	•	•	•	•	•		•
Strategies for representing knowledge : Using Predicate Logic - Resolution in Predicate Logic.	•		•	•		•		•		•
representing knowledge : Using Rules - Forward and Backward Reasoning.	•	•		•		•	•	•		•
representing knowledge : Using Semanic network.			•		•			•		
representing knowledge : Using Frames.		•		•		•	•		•	
Uncerainty - Symbolic Reasoning under Uncerainty.							•		•	
Languages and tools : Levels of soaftware, AI language and environments.		•		•				•	•	•
Building Expert Systems in CLIPS.	•	•			•		•	•	•	•

Learning Method/ILO Matrix										
Course Content	a1	a3	a6	b1	b2	b4	c2	c4	c5	c13
Lectures	٠	•	•	•	•	٠	•	٠	•	•
Tutorials					•	•	•	•	•	•

Learning Method/ILO Matrix

Assessment Methods/ILO Matrix

Assessment	a1	a3	a6	b1	b2	b4	c2	c4	c5	c13
Assignment	•	•	•					•		•
Midterm Exam	•	•	•	•	•	•	•		•	
Oral exam	•	•	•					•	•	•
Final Exam	•	•	•	•	•	•	•		•	

Course Coordinator: Dr. Magdi Zakaria Head of Department: Dr. Samir ElMougy Date: