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1. Introduction 

Autism Spectrum Disorder (ASD) is a complex 

neurodevelopmental condition characterized by persistent 

challenges in social communication, and repetitive 

behaviors. Early diagnosis and intervention are crucial for 

improving outcomes and enhancing the quality of life for 

individuals with ASD. However, diagnosing ASD in early 

childhood can be challenging due to the heterogeneity of 

symptoms, variability in presentation, and the lack of 

objective diagnostic tools. Traditional diagnostic methods 

often rely on clinical observation and standardized 

assessments, which can be time-consuming and subject to 

variability in interpretation. 

In recent years, there has been growing interest in 

leveraging machine learning (ML) and deep learning (DL) 

techniques to aid in the early diagnosis of ASD [22]. ML 

and DL offer powerful computational approaches for 

analyzing diverse datasets and identifying patterns that 

may be indicative of ASD. By harnessing the potential of 

these advanced algorithms, researchers and clinicians aim 

to develop accurate, efficient, and objective methods for 

early ASD diagnosis. 

The utilization of ML and DL approaches in ASD 

diagnosis [2, 8] encompasses a multifaceted analysis of 

diverse data types. This inclusive examination 

incorporates behavioral observations, developmental 

Communication and Computer Engineering Research Magazine, Vol (1), No (1), 2024. 

Deep Learning-based Eye-Tracking Biomarker Analysis for 

Computer-Aided ASD Diagnosis 

Dalia I. Elewaily1,*, Abdulrahman S. Elsayed2, Abdallah M. Eldaw2, Ahmed Y. Elgraihy2, Hazem H. 

Ibrahim2, Moaz E. Tawfik2, Mohammad K. Abulkhair2, Omnia H. Azzam2, Safaa W. Mohamed2, Sara Y. 

Nour2, Yousef K. Sedky2, Sarah M. Ayyad1 

1 Computers and Control Systems Engineering Dep., Faculty of Engineering, Mansoura University, Egypt 
2 Communication and Computer Engineering Program, Faculty of Engineering, Mansoura University, Egypt 

 

 

 

Abstract 

Autism Spectrum Disorder (ASD) poses challenges in early detection and intervention, 

necessitating innovative diagnostic approaches. This study employs machine learning and deep 

learning on eye-tracking data to uncover ASD-related patterns. Utilizing traditional algorithms 

and Convolutional Neural Networks (CNNs), A longitudinal eye-tracking biomarker dataset was 

analysed . Results demonstrate efficacy in discerning ASD-related patterns, with SVC and Random 

Forest showing robust generalization. Integration of an augmented CNN model into the "TAYF" 

desktop application marks progress towards clinical deployment, offering clinicians a tool for 

early ASD detection. Future research could expand the dataset to include a more diverse cohort, 

encompassing additional age groups and demographics to enhance model generalization. 

Integrating multimodal data sources like EEG signals or facial expressions alongside eye-

tracking data could offer a comprehensive understanding of ASD, potentially improving 

classification accuracy. Exploring interpretability techniques for deep learning models could 

enhance transparency, aiding clinicians in understanding model predictions. Longitudinal studies 

tracking ASD-related abnormalities over time could uncover dynamic patterns and biomarkers, 

informing personalized treatment strategies. These efforts have the potential to advance ASD 

research and improve diagnostic tools and intervention strategies. 
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assessments, neuroimaging data, genetic information, and 

sensor-based data, each contributing pivotal insights into 

the ASD diagnostic landscape. The taxonomy delineated 

in Figure (1) classifies ML and DL-driven ASD diagnostic 

and screening methodologies into six principal categories. 

Primarily, behavioral analysis-based approaches represent 

a foundational category, concentrating on scrutinizing 

behavioral data to unveil patterns indicative of ASD [17, 

18]. Employing ML and DL algorithms features such as 

social interactions, communication patterns, repetitive 

behaviors, and sensory sensitivities are scrutinized to 

discern ASD-related traits with precision and efficacy. 

Similarly, neuroimaging analysis-based methodologies 

[14, 15] harness advanced brain imaging techniques such 

as structural magnetic resonance imaging (MRI), 

functional MRI (fMRI), and diffusion tensor imaging 

(DTI) [24] to elucidate the intricate brain structure and 

function in ASD individuals. Through ML and DL 

algorithms, neuroimaging data is meticulously analyzed to 

unveil biomarkers, structural abnormalities, and 

functional connectivity patterns intricately associated with 

ASD. 

Furthermore, genetic analysis-based strategies [9,10] 

pivot towards the dissection of genetic data to pinpoint 

genetic markers or variations linked to ASD susceptibility. 

Here, ML and DL algorithms scrutinize genetic 

sequences, single nucleotide polymorphisms (SNPs) [24], 

gene expression profiles [25], and epigenetic 

modifications [26], unraveling the genetic underpinnings 

contributing to ASD pathogenesis. 

Conversely, language and communication analysis-based 

methodologies scrutinize linguistic and communication 

data, delving into speech patterns, language use, and 

verbal/non-verbal communication to discern language 

deficits indicative of ASD. Employing ML and DL 

algorithms, natural language processing (NLP) [11] data, 

including interview transcripts, conversations [12], or 

written text, is meticulously analyzed to delineate 

linguistic features intricately associated with ASD. 

Moreover, sensor-based monitoring approaches [19, 20] 

deploy wearable sensors or smart devices to amass data on 

movement, activity levels, physiological signals, and 

environmental factors, facilitating the identification of 

behavioral patterns characteristic of ASD. Through ML 

and DL algorithms, sensor data, including accelerometry, 

heart rate variability, or sleep patterns [27], is 

meticulously analyzed to unearth characteristic features 

indicative of ASD. 
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Lastly, eye-tracking analysis-based methodologies 

emerge as a promising frontier, endeavoring to pinpoint 

biomarkers associated with ASD [16]. By leveraging eye-

tracking biomarkers, these methodologies analyze eye 

movement patterns during social interactions, visual tasks, 

or attentional tasks to discern disparities in gaze behavior 

indicative of ASD. Through the adept analysis of fixation 

patterns, saccadic movements, or pupil dilation, ML and 

DL algorithms unveil abnormalities in visual attention 

intricately associated with ASD. 

Each methodology-based ASD diagnosis possesses 

distinctive strengths, potential applications, and 

contributions to the advancement of ASD. However, ML 

and DL-based ASD diagnosis methodologies encounter 

numerous limitations, encompassing challenges about 

data quality and quantity, model interpretability, 

overfitting risks, the necessity for manual feature 

engineering, data imbalance, generalization to real-world 

contexts, ethical and privacy considerations, validation 

and reproducibility constraints, and impediments to 

clinical integration. These constraints underscore the 

imperative for interdisciplinary collaboration and 

sustained research endeavors aimed at mitigating these 

obstacles and cultivating robust, interpretable, and 

ethically grounded ASD diagnosis methodologies capable 

of seamless translation into clinical settings. 

The main objective of this research is to employ 

traditional machine learning algorithms and deep learning 

techniques for the accurate classification of eye-tracking 

data related to ASD. Through comprehensive evaluation, 

the proposed system aims to understand the accuracy, 

interpretability, efficiency, generalization, and feature 

engineering requirements of the trained models. 

Additionally, the system seeks to integrate the trained 

augmented CNN model into a desktop application 

("TAYF") to facilitate clinical ASD diagnosis, offering 

clinicians a valuable tool for early detection and 

intervention strategies employing rigorous methodology, 

utilizing datasets effectively, conducting thorough model 

training, and evaluating performance meticulously, the 

proposed system strives to close the divide between 

research findings and clinical application, with the 

overarching goal of enhancing ASD diagnosis and 

intervention outcomes. 

The primary contributions of this research paper are as 

follows: 

1. Reviewing and classifying the predominant 

approaches to ASD diagnosis based on machine 

learning and deep learning methodologies. 

2. Employing traditional machine learning and deep 

learning techniques to analyze an eye-tracking 

biomarker dataset for ASD diagnosis. 

3. Evaluating the performance metrics, dataset 

utilization, and methodology of the trained models to 

enhance ASD diagnosis and intervention efficacy. 

4. Integrating the trained model into the desktop 

application "TAYF" for clinical ASD diagnosis, 

thereby facilitating its practical application in real-

world scenarios. 

The subsequent sections of the paper are structured as 

follows: Section 2 offers an overview of the most related 

research studies on ASD diagnosis utilizing machine 

learning (ML) and deep learning (DL) approaches, 

elucidating their methodologies and limitations. In 

Section 3, the methodology of the proposed deep learning 

model slated for integration into clinical diagnosis is 

discussed. Section 4 entails the evaluation of the 

performance of both trained ML and DL models. Section 

5 delves into the integration of the trained DL model 

within the developed desktop application 'TAYF'. Finally, 

Section 6 concludes the paper and delineates avenues for 

future research. 

2. Literature review  

The field of Autism Spectrum Disorder (ASD) diagnosis 

and screening has witnessed significant advancements 

driven by interdisciplinary research efforts across various 

domains. In this section, an overview of the most relevant 

literature is presented, that pertains to ML and DL-based 

methodologies for ASD diagnosis, encompassing 

behavioral analysis, neuroimaging analysis, genetic 

analysis, language and communication analysis, sensor-

based monitoring, and eye-tracking analysis. The 

methodologies, utilized approaches, performance metrics, 

and the limitations of the most related work are 

summarized in Table 1.  

Neuroimaging analysis-based methodologies [13-15] 

have received significant attention in the pursuit of 

biomarkers for ASD, with ML and DL algorithms playing 

a pivotal role in analyzing both structural and functional 

brain imaging data. As in [14], where authors employed 

deep learning models on MRI data to discern structural 

and strategic markers of ASD, delineating specific brain 

regions associated with the disorder. The objective was to 

streamline ASD diagnosis by furnishing clinicians with 

efficient tools for classification and analysis. Additionally, 

a study presented the ASD-SAENet model, which 
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integrates a Sparse Autoencoder and Deep-Neural 

Network to classify ASD from fMRI data with high 

accuracy. This model exhibits notable specificity and 

robust generalizability across diverse imaging sites, 

underscoring its potential for early and precise ASD 

detection. 

Additionally, there has been a thorough exploration of 

behavioral analysis-based methodologies for ASD 

diagnosis, employing machine learning (ML) and deep 

learning (DL) algorithms to scrutinize behavioral data and 

identify patterns suggestive of ASD. In a study referenced 

in [17], interaction analysis within home videos coupled 

with explainable artificial intelligence was employed to 

recognize potential indicators of infant development 

impairment, with a specific focus on ASD-related 

features. Additionally, in another study proposed in  [18], 

a Composite AI framework amalgamating Deep Learning 

and rule-based systems was introduced for behavior 

analysis, exhibiting high accuracy in discerning 

communication cues. This framework adeptly interprets 

both verbal and non-verbal cues, showcasing the potential 

of Composite AI in augmenting social interaction 

analysis. 

Furthermore, Genetic analysis-based methods have shed 

light on the genetic underpinnings of ASD, with ML and 

DL algorithms utilized to analyze genetic data and identify 

genetic markers or variations associated with ASD risk. In 

[10], ML algorithms were harnessed to discern gene 

biomarkers associated with ASD and Alzheimer's disease, 

achieving remarkable accuracy rates of 97.62% for ASD 

prediction and 92.95% for Alzheimer's discrimination. 

The methodology involved feature selection and genetic 

algorithm optimization. Similarly, [9] leveraged gene 

expression data from toddlers with ASD and controls to 

identify crucial biomarkers using LASSO regression and 

neural networks. The study aimed to formulate a 

predictive model for early ASD diagnosis based on 

immune-related biomarkers, achieving an accuracy of 

86% and an AUC of 0.88. 

Moreover, Language and communication analysis-based 

methodologies have leveraged ML and DL techniques to 

analyze linguistic and communication data for ASD 

diagnosis. In [12], ADOS-2 recordings were employed to 

extract prosodic features using a harmonic model, with a 

specific focus on pitch and loudness, aiming to discern 

between individuals with ASD and typically developing 

controls. This study underscored the efficacy of prosodic 

measures over articulation features in distinguishing ASD 

cases. Additionally, [11] employed natural language 

processing (NLP) techniques to translate saccadic eye 

movements into sequences resembling text, to ASD. The 

approach exhibited promising accuracy in classification 

models, suggesting the potential of sequence-based 

modeling for ASD diagnosis. 

Contrastingly, sensor-based monitoring methodologies 

have emerged as a promising avenue for ASD diagnosis, 

employing wearable sensors and smart devices to gather 

data on movement, activity levels, physiological signals, 

and environmental factors. In [19], authors introduced a 

platform based on wearable sensors to recognize gestures 

in children with ASD, utilizing machine learning 

algorithms. The system's objective is to enhance 

communication by monitoring and categorizing gestures 

exhibited by individuals with autism. Additionally, in 

[20], the presented study aimed to diagnose ASD by 

employing AI and biosensors to analyze brain 

connectivity patterns. Through the utilization of 

functional MRI data and innovative algorithms, the 

research endeavors to enhance accuracy in ASD detection 

and deepen understanding of functional abnormalities. 

On the other hand, methodologies based on eye-tracking 

analysis have exhibited considerable potential in 

discerning biomarkers linked to ASD. For instance, a 

study conducted by [1] employed eye-tracking technology 

in conjunction with machine learning algorithms to 

scrutinize gaze behavior, aiming at early detection of ASD 

in pediatric populations. The findings of this investigation 

underscored the efficacy of leveraging visual 

representations and deep learning models to achieve 

objective ASD diagnosis. Additionally, the work 

referenced in [7] delves into the shortcomings inherent in 

prevailing datasets and conventional screening 

techniques, accentuating the promise held by deep neural 

networks in enhancing diagnostic efficacy. 

Further, authors in [3] proposed an automated technique 

for detecting ASD, termed ETASD-CBODL, which 

amalgamated U-Net segmentation, Inception v3 feature 

extraction, CBO hyperparameter optimization, and LSTM 

classification methodologies. The primary objective was 

to augment the accuracy of ASD identification through the 

integration of eye-tracking data and deep-learning models. 

Meanwhile, [4] introduced an Involution Fused ConvNet 

architecture tailored for the analysis of eye-tracking 

patterns observed in children diagnosed with ASD, 

resulting in commendable accuracy rates and performance 

metrics. Through the amalgamation of disparate datasets, 

augmentation techniques, and the utilization of 

sophisticated neural network architectures, the investigat-
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Table  1  

Summary of the most related ML and DL-based ASD diagnosis Studies. 

Category 
Refer

ence 
Year Methodology Dataset Modelling algorithms Performance Metrics  Limitations 

N
e
u

r
o
im

a
g

in
g

 

 

[13] 2020 

utilizing deep learning models, including CNN, 

STN, CAM, RNN, RAM, and FC, to analyze 

structural and strategic evidence of ASD using 

MRI data without human feature extraction. 

• YUM dataset: 84 subjects 

diagnosed with ASD based on 

DSM-V criteria 

• ABIDE dataset: Over 1000 

images from multiple 

institutions 

 

• CNN (Convolutional 

Neural Network) 

• STN (Spatial Transformer 

Network) 

• CAM (Class Activation 

Mapping) 

• RNN (Recurrent Neural 

Network) 

• RAM (Recurrent 

Attention Model) 

• FC (Fully-Connected 

Network) 

• The 2D/3D CNN 

achieved an Accuracy of 

89%  for the YUM dataset 

• A simple 3D CNN 

achieved an Accuracy of 

90% for the ABIDE 

dataset 

• Data variability due to multiple institutions 

and scanners in the ABIDE dataset 

• Small sample size in the YUM dataset 

compared to ABIDE 

• Structural heterogeneity in the ABIDE 

dataset. 

• Challenges in achieving consistent accuracy 

across different datasets 

• Interpretability and comprehensibility of deep 

learning models in diagnosing psychiatric 

disorders 

 

[14] 2021 

The study proposed the ASD-SAENet model, 

combining a Sparse Autoencoder and Deep-

Neural Network, trained using k-fold cross-

validation on fMRI data to classify ASD. Fine-

tuning was done using the Adam optimizer, 

with model evaluation on both the whole 

dataset and individual sites. 

• ABIDE dataset containing 

1,035 subjects. 

• ASD-SAENet model 

combining Sparse 

Autoencoder and Deep-

Neural Network. 

 

• Accuracy: 70.8% 

• Sensitivity: 62.2% 

• Specificity: 79.1% 

• Modest sample size for training and 

evaluation. 

• Lack of interpretability of deep-learning 

model features. 

• Potential group differences due to head 

movement in fMRI data. 

• Uncertainty in distinguishing neurological 

differences from noise. 

[15] 2021 

 

 The study combines deep feature selection 

(DFS) to identify critical functional connections 

related to ASD and utilizes graph convolutional 

networks for classification, demonstrating 

improved accuracy in distinguishing ASD from 

typically developing individuals. 

 

• ABIDE database 

•  Deep Feature Selection 

(DFS).  

• Graph Convolutional 

Networks (GCN). 

• Multi-Layer Perceptron 

(MLP). 

• Logistic Regression, 

Gaussian Process (GP). 

• Support Vector Machine 

(SVM) 

• Accuracy improvement 

by DFS: 8% to 15% 

• Classification accuracy 

comparison with 

traditional methods: 

Superior performance  

The study is limited by the availability and quality 

of data from the ABIDE database. 

The generalizability of the proposed method to 

other datasets and populations needs further 

validation. 

The interpretability of the identified functional 

connections and their direct relevance to ASD 

pathology requires additional investigation. 

 

B
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h

a
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r
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l 
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n

a
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[17 ] 2023 

A Composite AI framework combining Deep 

Learning methods for feature extraction with 

rule-based systems for detecting key episodes, 

followed by classifiers for interpreting activities 

in social interactions. 

• not explicitly mentioned. 

 

• Deep Learning methods 

for feature extraction, 

•  Rule-based systems for 

episode detection. 

• Classifiers for activity 

interpretation. 

• Achieved 87% accuracy 

for verbal requests and 

89% accuracy for non-

verbal requests. 

• Reliance on predefined rules may limit 

adaptability to diverse social interaction 

scenarios. 

• Lack of real-time processing capabilities 

Limited scalability to large-scale 

applications. 

 

[18 ] 2023 

Utilizing interaction analysis in home videos 

and explainable artificial intelligence to identify 

potential indicators of infant development 

impairment, focusing on specific features 

related to ASD 

• Home videos of infants-

caregivers interactions, 

including children later 

diagnosed with ASD and 

typically developing children. 

•  Explainable artificial 

intelligence using the 

SHAP approach. 

•  Sensitivity and 

specificity for identifying 

potential red flags for 

ASD were high, 

indicating promising 

results for early detection. 

• Limited sample size with a small number of 

children. 

• Disproportion between male and female 

children in the dataset. 

• Inconsistency in the most rated features 

identified by observers. 

 

G
en
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n

a
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[10] 2020 

• Utilize machine learning algorithms to 

identify candidate gene biomarkers for 

ASD and Alzheimer's disease by 

analyzing gene expression profiles and 

applying feature selection techniques. 

• Employing a workflow involving signal-

to-noise ratio analysis, logistic threshold 

function, HSIC-Lasso algorithm, and 

Regularized Genetic Algorithm to select 

optimal gene subsets for disease 

prediction. 

 

• Autism dataset: GSE26415 

with 42 samples (21 autistic, 

21 control) and 19,194 gene 

expression probes. 

• Alzheimer's dataset: GSE1297 

with 31 samples (9 control, 22 

AD-affected). 

 

• Bayes net (BN), logistic 

regression (LR), support 

vector machine (SVM), 

multilayered perceptron 

neural network (MLP-

NN), extreme gradient 

boosting (XGBoost). 

• SVM model:92.95% 

accuracy for Alzheimer's 

samples. 

• Extreme Gradient 

Boosting algorithm: 

97.62% for ASD 

• Limited sample size in the datasets. 

• Complexity of high-dimensional genomic 

data affecting computational efficiency. 

• Optimal results are yet to be achieved with 

more sophisticated mathematical models. 

 

[9] 2023 

 

Utilizing gene expression data from ASD and 

control samples, performing differential gene 

expression analysis, and employing machine 

learning techniques like LASSO regression, 

logistic regression, and nomogram construction 

for early ASD diagnosis. 

 

• Gene expression data from 

128 ASD and 126 control 

toddlers, were obtained from 

the Gene Expression Omnibus 

(GEO) database (GSE111175 

and GSE42133). 

 

• Least Absolute Shrinkage 

and Selection Operator 

(LASSO) regression. 

• Binary logistic regression. 

 

• Accuracy achieved by 

LASSO regression: 86%. 

• Accuracy achieved by 

neural network models: 

88%. 

• Area Under the Curve 

(AUC) for the neural 

network model: 0.88 

• Limited sample size  

•  Lack of external validation in larger, 

heterogeneous populations. 

•  Reliance on peripheral blood biomarkers 

may not fully capture the complexity of 

ASD. 

• Potential overfitting of machine learning 

models. 

L
a

n
g

u
a
g
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a

n
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m
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u

n
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a
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o
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[11 ] 2020 

NLP techniques were applied to transform 

saccadic eye movements into text-like 

sequences for detecting ASD using ConvNet 

and LSTM models. 

Evaluation is done through a 3-fold cross-

validation procedure, employing the SMOTE 

over-sampling technique, with performance 

peaking at L=400 for sequence length. 

 

 

• Eye-tracking data for 

individuals with and without 

ASD. 

• ConvNet  

• LSTM  

 

• ConvNet Model: 

Precision 0.79, Recall 

0.71. 

• LSTM Model:  

Precision 0.72, Recall 

0.48. 

• Lack of a benchmark dataset in ASD 

literature for objective comparison with other 

ML approaches. 

• Limited exploration of ML approaches 

integrating eye-tracking data. 

•  Performance decline observed beyond 

sequence length L=400. 

[12 ] 2021 

Utilizing  ADOS-2 recordings from 

conversational tasks to extract prosodic features 

using a harmonic model, focusing on pitch and 

loudness to differentiate between individuals 

with ASD and typically developing (TD) 

controls. 

 

 

 

• ADOS-2 recordings from 

conversational tasks 

Modelling  

• Support Vector Machine 

(SVM) 

Accuracy: 

• AUC-ROC 88.27% 

• FMC 77.6% 

• Small sample size and lack of gender and IQ 

balance. 

• Preliminary results not adjusted for multiple 

comparisons. 

•  Need for replication in larger, more diverse 

samples. 

•  
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[19] 2021 

 

Extracting features from sensor data in time and 

frequency domains, evaluating various 

classifiers for gesture recognition, and 

implementing real-time gesture monitoring 

using Raspberry Pi. 

 

9 ASD children were used for 

training and testing, with each 

gesture performed 7-12 times. 

• K-Nearest Neighbors 

(KNN),  

• Decision Tree,  

• Random Forest. 

 

• Accuracy of about 91% in 

recognizing gesture 

movements of children 

with ASD. 

•  Limited sample size of ASD children used 

for training and testing. 

• Lack of public availability of the dataset. 

• Dependency on specific sensors and data 

acquisition setup. 

[20] 2023 

Utilizing AI algorithms and functional MRI 

data to diagnose ASD, incorporating 

multiple brain atlases and a low estimated 

rank tensor approach to analyze 

functional connectivity patterns. 

ABIDE dataset 

 

• Linear SVM 

• 2D CNN 

 

• Accuracy - 76.61% 

 (AAL atlas),  

• 63.74% (Pearson 

correlation FCN) 

• AUC - 0.82 

 

• Complexity in estimating ideal connections 

in fMRI data. 

• Challenges in dataset availability and data 

heterogeneity from multiple sites. 

• Subject variability impacting brain region 

identification and connectivity analysis. 

E
y
e
-t

r
a
c
k

in
g

 a
n

a
ly

si
s 

[1] 2021 

recruited 59 school-aged children, including 

those with ASD and typically developing 

children, to analyze gaze behavior using 

eye-tracking technology [T3] 

 

59 school-aged participants 

 

• Convolutional Neural 

Network (CNN) 

 

• Accuracy ≈71% [T5] 

• Small number of participants affecting 

generalizability. 

• Lack of access to all standardized test scores 

for clinical diagnosis. 

• Short duration of video scenarios impacting 

data richness [T6]. 

[7] 2022 

 Utilizing eye-tracking scan path images to 

train machine learning models for autism 

screening, comparing traditional 

algorithms with a deep neural network 

approach. 

 

 

• Original Dataset: 547 ETSP 

images 

• Augmented Dataset: 2566 

ETSP images 

 

• Decision Stump (DSVM) 

• Decision Jungle (DJ) 

• Boosted Decision Tree 

(BDT) 

• Deep Neural Network 

(DNN) 

 

 

• Sensitivity: 78.57 

• Specificity: 75.47 

• (PPV): 87.12 

• (NPV): 62.50 

• (AUC): 78.00 

• Limited availability of datasets suitable for 

machine learning research. 

• Challenges in obtaining an extensive dataset 

representing the complete spectrum of ASD 

symptoms. 

• Dependence on consistent and high-quality 

training data  

•  Potential impact of the environment. 

distractions on the child's attention. 

[3] 2023 

 

Devloping an automated ASD detection 

technique, ETASD-CBODL, utilizing U-

Net segmentation, Inception v3 feature 

extraction, CBO hyperparameter 

optimization, and LSTM classification. 

 

 

• ASD dataset with 547 

instances, including 219 ASD 

class images and 328 typically 

developing (TD) class images 

• ETASD-CBODL 

• FFNN 

• ANN 

• google net 

• Res-Net18 

• Google-Net SVM 

ACCURACY: 

• ETASD-CBODL:99.29 

• FFNN:99.00 

• ANN: 98.86 

• Google-Net: 94.63 

• Res-Net18: 98.56 

• Google-Net SVM: 96.70 

• Data quality impact on model accuracy. 

• Technical requirements for specialized tools. 

• Ethical concerns regarding data privacy. 

• Generalizability across diverse populations 

and settings. 

[5] 2023 

Utilizing eye-tracking data from children with 

ASD and TD children, applied deep learning 

models (LSTM, CNN-LSTM, Bi-LSTM, 

GRU), and evaluated model performance using 

various metrics. 

 

• Eye-tracking data was 

collected from 29 children 

with ASD and 30 typically 

developing children. 

• LSTM, 

• CNN-LSTM,  

• Bi-LSTM,  

• GRU. 

 

• BiLSTM: 

Test Accuracy 96.44%, 

Sensitivity 93.50%, 

Specificity 98.17%, AUC 

97%, F1 Score 97.20%. 

• GRU:  

Test Accuracy 97.49%, 

Sensitivity 95.89%, 

Specificity 98.40%, AUC 

97%, F1 Score 98.04%. 

• CNN-LSTM: 

Test Accuracy 97.94%, 

Sensitivity 96.44%, 

Specificity 98.79%, AUC 

98%, F1 Score 98.39%. 

• LSTM:  

Test Accuracy 98.33%, 

Sensitivity 97.25%, 

Specificity 98.94%, AUC 

98%, F1 Score 98.70%. 

• Small Sample Size: A limited number of 

participants in the dataset may impact the 

generalizability of the findings. 

• Computational Complexity: Deep learning 

models used in the study may require 

significant computational resources and 

expertise. 

• Potential Bias: The study's findings may be 

influenced by biases inherent in the dataset or 

modeling techniques. 

 

[4] 2024 

utilizing two datasets of typically developed 

children and those with ASD, merging them for 

a larger sample, and implementing an 

Involution Fused ConvNet architecture to 

analyze eye-tracking patterns, achieving high 

accuracy and performance metrics. 

• Dataset 1: Contains 547 

images with 328 from 

typically developed 

participants and 219 from 

ASD diagnosed participants. 

• Dataset 2: Includes 300 

images with eye movement 

data from 14 children 

diagnosed with ASD and 14 

typically developed children. 

• Combined Dataset: Merged 

Dataset 1 and Dataset 2 to 

create a larger dataset with 

628 images from typically 

developed participants and 

519 from ASD participants. 

 

• Involution Fused 

ConvNet: A proposed 

hybrid model based on 

involution and 

convolution layers for 

analyzing eye-tracking 

patterns in children with 

ASD. 

• Accuracy: 97.41%  

• F1 Score: 97.83% for 

grayscale photos and 

97.12% for RGB photos. 

 

• Unable to classify sub-types of ASD due to 

limitations in the research scope. 

• Did not measure computational complexity 

using FLOPs and MACCs for the new 

architectures. 

• Lack of optimized libraries for calculating 

complexity metrics for Involution and 

Transformer-based models. 

[6] 2024 

Utilized a CNN model to analyze eye-

tracking scan path images for predicting ASD 

severity based on a dataset of 59 children. 

Conducted experiments with eye-tracking 

technology on children viewing videos with 

visually attractive components to classify 

ASD severity. 

 

 

• Public dataset with 59 

children (29 ASD-diagnosed, 

30 Typically Developing) 

 

• Convolutional Neural 

Network (CNN) 

 

• Accuracy of 95.59% in 

classifying ASD  

 

• Relatively small dataset size  

• Study conducted in a controlled environment, 

potentially not reflecting real-world 

scenarios. 

• Focus on a specific age group  

• Lack of exploration on individual differences 

in eye-tracking patterns. 
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-ion underscored the efficacy of location-specific 

methodologies in the classification of ASD. 

The collective literature review highlights the wide range 

of methodologies utilizing ML and DL for ASD diagnosis. 

However, these methodologies encounter obstacles 

relating to data accessibility, interpretability, and bias. 

Constraints such as limited datasets and interpretability 

hinder the transparency of models, while biases within 

training data can result in distorted predictions. 

Additionally, challenges regarding generalization, 

computational resource requirements, and ethical 

considerations contribute to the scalability and ethical 

application of these methodologies. 

3. The Proposed System Methodology 

The primary goal of this study is to utilize both traditional 

machine learning algorithms and deep learning techniques 

to accurately classify eye-tracking data associated with 

Autism Spectrum Disorder (ASD). The proposed system 

aims to comprehend the accuracy, loss, precision, 

sensitivity, and generalizability of the trained models. 

Moreover, the system endeavors to integrate the trained 

augmented CNN model into a desktop application named 

"TAYF," to aid clinical ASD diagnosis. This integration 

provides clinicians with a valuable tool for early detection 

and intervention strategies. An overview of the proposed 

system is depicted in Figure (2). 

3.1 Dataset 

The primary dataset utilized in this proposed system is 

publicly available in [21]. Comprising eye-tracking data 

obtained from a cohort of 60 participants, the dataset 

encompasses a total of 545 distinct images. Notably, 

participants' eye movements were meticulously tracked 

during the viewing of specific videos, incorporating 

individuals of varying genders and aged between 2 to 12 

years. Furthermore, the dataset includes individuals 

diagnosed with ASD as well as typically developing 

counterparts, with each participant uniquely identified by 

an assigned ID to facilitate efficient data management and 

analysis.  

As depicted in Figure (3), the longitudinal nature of the 

dataset, spanning various recording intervals over 

approximately one year, offers valuable insights into the 

temporal dynamics of eye movement patterns across 

developmental trajectories. Additionally, the dataset 

features visual representations showcasing eye 

movements superimposed on a black background, with 

distinct markers indicating participants diagnosed with 

ASD (TS) and typically developing individuals (TC). 

Serving as a pivotal resource, this dataset enables an in-

depth exploration of eye movement patterns in the context 

of ASD compared to typically developing peers, shedding 

light on the underlying mechanisms of visual attention in 

neurodevelopmental disorders.  

The inclusion of longitudinal data and a diverse 

participant cohort facilitates nuanced investigations into 

developmental trajectories and potential biomarkers 

associated with ASD-related visual processing 

abnormalities. Furthermore, the clear and intuitive 

visualization of eye-tracking data enhances 

interpretability, facilitating robust comparative analyses 

across participant groups. Thus, this dataset holds 

significant promise in advancing ASD research, informing 

diagnostic refinement, and the development of targeted 

intervention strategies to address visual attention deficits 

in affected individuals.

 

 

 

 

 

 

 

 

 Fig. 2 Overview of the proposed system. 
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3.2 Data Analysis 

3.2.1 Traditional ML techniques 

The analysis of the eye-tracking biomarker dataset using 

traditional machine learning techniques involves a 

systematic approach to train and evaluate models such as 

Logistic Regression, K-Nearest Neighbors (KNN), 

Support Vector Classifier (SVC), Decision Tree, and 

Random Forest. With a dataset comprising 545 images, it 

is essential to partition the data into distinct subsets for 

training, validation, and testing, ensuring the integrity of 

the model development process. 

The dataset splitting typically involves allocating 70% of 

the data for training, 20% for validation, and 10% for 

testing. This partitioning scheme enables the models to 

learn patterns from the training data, optimize 

hyperparameters using the validation set, and evaluate 

performance on unseen data via the testing set, thereby 

providing a reliable assessment of generalization 

capabilities. 

Each traditional machine learning algorithm is then 

trained on the training subset using the eye-tracking 

biomarker data. Logistic Regression learns the 

relationship between the biomarkers and ASD diagnosis 

by fitting a logistic curve to the data. KNN classifies 

samples based on the majority class among its nearest 

neighbors, employing a distance metric such as Euclidean 

distance. 

SVC aims to find the optimal hyperplane that separates 

classes in the feature space, while Decision Tree 

recursively partitions the feature space based on 

informative features to create a tree-like structure for 

classification. Random Forest, on the other hand, 

constructs multiple decision trees and aggregates their 

predictions to enhance robustness and accuracy. 

After training, the models are validated using the 

validation subset to fine-tune hyperparameters and 

optimize performance metrics such as accuracy, precision, 

recall, and F1 score. Hyperparameter tuning involves 

adjusting parameters such as regularization strength, 

number of neighbors (K), kernel type, maximum tree 

depth, and number of trees in Random Forest to achieve 

optimal performance. The performance evaluation and 

Fig. 3. Sample Images From The DataSet 

 (c) TS001_11 ( d) TS002_11 

 (a) Tc001_39  (b) Tc002_39 
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results of the trained models will be discussed in Section 

4. 

3.3.2 The Deep Learning Model 

The meticulous elucidation of the Convolutional Neural 

Network (CNN) tailored for ASD classification is detailed 

herein. The process encompasses various stages, including 

data collection, preprocessing, model development, 

training, evaluation, and testing, thereby shedding light on 

the intricate nuances of each step involved in crafting a 

dependable and resilient ASD classification model. The 

architecture of the CNN model is illustrated in Figure (4). 

The TensorFlow library is utilized as the cornerstone for 

model generation, accompanied by NumPy, renowned for 

its diverse array of data structures and methods, 

facilitating seamless data manipulation. Matplotlib is 

instrumental in visualizing various figures throughout the 

model development process. Also, Optimal GPU memory 

utilization is ensured by the TensorFlow GPU memory 

growth configuration, dynamically allocating memory as 

needed to mitigate memory-related issues. 

I. Data Collection & Preprocessing 

A diverse dataset is meticulously assembled, forming the 

bedrock upon which our model is built. The dataset, 

comprising 545 images meticulously classified into two 

classes: TC images denoting Non-ASD and TS images 

signifying ASD serves as the foundation for model 

training. By Utilizing NumPy, data is converted into 

NumPy arrays, subsequently grouped into batches of 32 to 

form tensor shapes. This step is accompanied by rigorous 

plotting to ensure the integrity of data processing. 

Additionally, Data was structured as [32, 256, 256, 3], 

representing batches of 32 images, each delineated by a 

256x256 pixel matrix with RGB elements. Pixel values 

are scaled down from the range [0 – 255] to [0 – 1] to 

ensure consistency and numerical stability, followed by 

rigorous testing and plotting to validate proper rescaling. 

Moreover, data batches are meticulously partitioned into 

70% training, 20% validation, and 10% testing subsets, 

employing take and skip functions alongside initial 

functions to ensure proper shuffling. 

II. Building the CNN Model  

The crux of our methodology lies in the design of the CNN 

architecture, which is depicted in Figure (hh) meticulously 

crafted to extract intricate features while mitigating 

overfitting. Leveraging Sequential for a linear stack of 

layers, the model architecture encompasses convolutional 

layers for feature extraction, pooling layers for 

representation downsampling, and dense layers for final 

output. Also,  compilation utilizes the Adam algorithm, 

tracking model accuracy across training epochs. 

III. Training & Testing the CNN Model 

 With the model architecture defined, the training phase 

ensues, guided by TensorBoard callbacks offering 

invaluable insights into the training process. The model 

learns from the labeled dataset, iteratively adjusting 

internal parameters to optimize predictions. Also for 

testing and performance evaluation of the trained models 

on the 10% of the dataset, precision, recall, and binary 

accuracy metrics are employed for rigorous model 

evaluation. The confusion matrix and classification 

reports that illuminate the capability of ASD classification 

are presented and discussed in Section 4. 

 
Fig. 4. CNN model Architecture.



 

 

Communication and Computer Engineering Research Magazine, Vol (1), No (1), 2024 

IV. The Augmented the CNN Model 

As a way to improve the model generalization, the dataset 

augmentation process was involved in expanding the 

original dataset by 40%, thereby enriching it with 

additional instances. This augmentation enhances the 

diversity and variability of the dataset, which can lead to 

improved model generalization and performance. 

Subsequently, the augmented dataset is utilized to train 

the CNN model tailored for ASD classification. The 

augmented model performance compared to the CNN 

model is discussed in Section 4. Also, The integration 

process of the augmented model into the TAYF 

application is presented in Section 5. 

4. Performance Evaluation & Results 

4.1 The Evaluation of the Traditional ML Models 

The performance of traditional machine learning 

algorithms was evaluated as an image classification task 

using 10% of the dataset separated from the original 

dataset of eye-tracking biomarker images. The following 

algorithms were tested: Logistic Regression, K-Nearest 

Neighbors (KNN), Support Vector Classifier (SVC), 

Decision Tree, and Random Forest. Each algorithm was 

trained and evaluated using 5-fold cross-validation, and 

the average accuracy across folds was calculated. 

In the context of eye-tracking-based ASD diagnosis, the 

performance metrics of trained models serve as crucial 

indicators of their effectiveness in accurately identifying 

ASD-related patterns and abnormalities in eye movement 

data. These metrics provide quantitative insights into how 

well the models distinguish between individuals with 

ASD and typically developing individuals based on their 

eye-tracking scan paths. Key performance metrics in this 

domain include accuracy, precision, recall, and F1 score. 

Accuracy (Eq. 1) measures the overall correctness of the 

model's predictions, it shows how well the model 

identifies ASD-related eye movement patterns. While 

precision (Eq. 2) quantifies the proportion of true positive 

predictions (correctly identified ASD cases) out of all 

positive predictions made by the model. It highlights the 

model's ability to avoid false positives, which is crucial in 

minimizing misdiagnosis in ASD screening. TP stands for 

True Positive, While TN stands for True Negative. In 

contrast, FP stands for False Positive, While  FN stands 

for False Negative. 

Further, Recall (Eq.3), also known as sensitivity, 

measures the proportion of true positive predictions out of 

all actual positive instances in the dataset. It indicates the 

model's capability to capture all relevant ASD-related eye 

movement patterns, thereby minimizing false negatives. 

While, the F1 score (Eq. 4) combines precision and recall 

into a single metric, providing a balanced assessment of 

the model's performance. It calculates the harmonic mean 

of precision and recall, offering a comprehensive 

evaluation of both false positives and false negatives in 

ASD diagnosis based on eye-tracking data.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TP+TN

TP+TN+FP+FN 
                                          (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

TP+FP 
                                                      (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
TP

TP+FN 
                                                           (3) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 X 
Precision X  Recall

Precision +Recall
                                 (4) 

The performance of the trained models was assessed 

through rigorous evaluation across multiple folds and 

metrics. Table 2 shows the average accuracy for each 

trained model during 5-fold cross-validation (CV). While 

Table 3 illustrates the performance metrics for each 

trained model. Also, their corresponding Confusion 

matrixes are illustrated in Figure (5).  

Logistic Regression exhibited an average accuracy of 

72.26% across the five folds, with a precision of 80% for 

class 0 and 54% for class 1. KNN achieved an average 

accuracy of 60.74%, demonstrating varying precision 

between classes, notably achieving 100% precision for 

class 0 but only 15% for class 1. SVC outperformed the 

other models with an average accuracy of 72.46%, 

displaying balanced precision across both classes and 

achieving 100% precision for class 0. Decision Tree and 

Random Forest models attained average accuracies of 

59.18% and 70.90%, respectively. However, both models 

showed varying performance metrics across classes. 

Furthermore, in terms of the 10% test set evaluation, SVC 

emerged as the top performer with an accuracy of 78.78%, 

indicating robust generalization capabilities. Random 

Forest also demonstrated favorable performance on the 

test set with an accuracy of 75.76%. Logistic Regression 

and Decision Tree models performed comparatively lower 

on the test set, with accuracies of 69.70% and 60.61% 

respectively, suggesting some degree of overfitting or 

limitations in generalization. KNN, while performing well 

in cross-validation, showed a lower accuracy of 66.67% 
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on the test set, indicating potential issues with 

generalization or suitability to unseen data. Overall, the 

evaluation highlights SVC and Random Forest as 

promising candidates for ASD classification due to their 

balanced performance across different evaluation metrics 

and robustness in generalization to unseen data. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2  

The Accuracy for each trained model during 5-fold cross-validation (CV) 
 

No. ML Algorithm Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Avg Accuracy of folds Avg accuracy on the test set 

1 Logistic Regression 0.75728 0.72816 0.76471 0.64706 0.71569 0.72258 0.69697 

2 KNN 0.60194 0.62136 0.62745 0.59804 0.58824 0.60741 0.66667 

3 SVC 0.74757 0.70874 0.76471 0.69608 0.70588 0.72460 0.78788 

4 Decision Tree 0.75728 0.63107 0.72549 0.71569 0.71569 0.59183 0.60606 

5 Random Forest 0.73529 0.60784 0.72549 0.64706 0.76471 0.70904 0.75758 

Table 3  
Performance of the ML algorithms’ tests on the original dataset 

No. ML Algorithm Class Support 
Performance Metrics 

Precision Recall F1-score Accuracy 

1 Logistic Regression 
0 22 0.80 0.73 0.76 

0.70 
1 11 0.54 0.64 0.58 

2 KNN 
0 31 1.00 0.65 0.78 

0.67 
1 2 0.15 1.00 0.27 

3 SVC 
0 27 1.00 0.74 0.85 

0.79 
1 6 0.46 1.00 0.63 

4 Decision Tree 
0 21 0.70 0.67 0.68 

0.61 
1 12 0.46 0.50 0.48 

5 Random Forest 
0 22 0.85 0.77 0.81 

0.76 
1 11 0.62 0.73 0.67 

(a) Logestic Regrission (b)  KNN ( c) SVC 

(d) Decision Tree 
(e ) Random Forest 

Fig . 5. Confusion Matrix of the traditional ML models 
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4.2 The Evaluation of the Original CNN Model

The evaluation process of the CNN-trained model 

involved rigorous monitoring of key performance metrics 

on a subset comprising 10% of the dataset consisting of 

eye-tracking biomarkers. The CNN model underwent 

training for 25 epochs. Throughout the training phase, the 

model's performance was continuously assessed by 

tracking both training and validation loss, along with 

accuracy, at each epoch. This iterative process allowed for 

the observation of the model's learning progress and 

provided insights into its convergence behavior. 

Following the initial training phase, the CNN model 

underwent fine-tuning to optimize its performance further. 

This fine-tuning process involved continued training until 

a predefined metric, such as validation accuracy, 

demonstrated minimal variation across consecutive 

epochs. By fine-tuning the model in this manner, efforts 

were made to enhance its ability to generalize well to 

unseen data and improve its overall performance on the 

classification task. 

Table 4 and Figure (6) illustrate the training progress and 

validation performance of the CNN model across the 50 

epochs. Initially, both the training and validation losses 

exhibit relatively high values, indicating significant 

discrepancies between predicted and actual values. 

However, as training progresses, both losses gradually 

decrease, suggesting an improvement in the model's 

performance and its ability to make accurate predictions. 

Correspondingly, the accuracy metrics, both for training 

and validation sets, increase steadily over epochs, 

indicating enhanced performance and a better fit to the 

data. 

Notably, as the number of epochs increases, the training 

and validation losses converge to low values, while the 

accuracies approach 100%, indicating a high degree of 

alignment between predicted and actual values. This 

convergence suggests that the model has effectively 

learned the underlying patterns in the data and can make 

highly accurate predictions. Overall, the progression of 

metrics over epochs demonstrates the iterative process of 

model training and refinement, culminating in a well-

performing neural network model with high accuracy and 

low loss on both training and validation datasets.

 

Table 4 

Training progress and validation performance of the original CNN model 

Epoch No. Train Loss Validation Loss Train accuracy Validation accuracy 

1 0.618534 0.495032 0.661458 0.78125 

2 0.572243 0.528925 0.697917 0.729167 

3 0.52423 0.464259 0.747396 0.802083 

4 0.490082 0.417983 0.744792 0.791667 

5 0.412643 0.368568 0.799479 0.8125 

6 0.406817 0.430676 0.799479 0.770833 

7 0.361036 0.268364 0.820313 0.885417 

8 0.342061 0.246872 0.851563 0.916667 

9 0.289622 0.30532 0.86979 0.84375 

10 0.27873 0.242421 0.867188 0.895833 

11 0.229229 0.234496 0.908854 0.885417 

12 0.255683 0.298521 0.888021 0.864583 

13 0.216497 0.148398 0.911458 0.947917 

14 0.129601 0.074943 0.955729 0.979167 

15 0.079275 0.086742 0.971354 0.979167 

16 0.067875 0.119244 0.981771 0.96875 

17 0.085294 0.021911 0.96875 0.989583 

18 0.066256 0.090504 0.96875 0.96875 

17 0.054194 0.036544 0.979167 1 

20 0.027889 0.02223 0.99219 1 

21 0.03091 0.015118 0.989583 1 

22 0.022305 0.012841 0.994792 1 

23 0.007788 0.009223 1 1 

24 0.006362 0.003719 1 1 

25 0.005397 0.013103 1 1 
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Fig. 7. Loss & Accuracy of the Augmented CNN model 

Fig. 6. Loss & Accuracy of the trained CNN model 

(a) CNN Model (b) The Augmented CNN Model 

Fig. 8. Confusion matrix of the original CNN Model VS the Augmented Model  
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4.3 The Evaluation of the Augmented CNN Model 

The augmented CNN model was trained using data 

augmentation techniques to enhance its generalization 

ability, specifically on the training data. Throughout the 

training process, both training and validation metrics were 

closely monitored, revealing insightful trends in the 

model's performance. The validation accuracy of the 

augmented CNN model reached an impressive 100%, 

indicating that the model achieved optimal performance 

on the validation dataset.  This suggests that the original 

CNN model likely wasn't overfitting to the training data, 

as further data augmentation did not significantly improve 

performance. Table 5 and Figure (7) illustrate the training 

progress and validation performance of the augmented 

CNN model. Also, Figure (8) shows the confusion 

matrices of the original and augmented CCN Model. 

5. Clinical Integration (The Desktop Application 

‘TAYF’) 

This section delves into the intricacies of implementing 

and integrating the desktop application and transforming 

the augmented CNN model for deployment. 

5.1 Converting the Model 

The conversion process was initiated to transition the 

TensorFlow model into a TFLite file, optimized for on-

device inference on mobile devices. Through the 

utilization of the tflite_converter, a series of steps were 

undertaken to load the model, execute requisite functions, 

and ultimately save it as a TFLite file. Subsequently, the 

integration of the TFLite model into our flutter application 

necessitated reliance on the "tflite_flutter" library, which 

is the sole repository offering updated support for desktop 

applications. However, the compilation of a Dynamic 

Link Library (DLL) proved to be a daunting task, owing 

to the outdated guidelines and discrepancies between 

systems and library updates. These challenges were 

addressed by procuring specific versions of Microsoft 

C++ build tools and CMake, cloning the TensorFlow 

source code from GitHub, and isolating the TFLite C API 

for compilation using CMake, tailored to Windows 

environments. 

5.2 DDL construction 

The construction of the DLL involved navigating through 

the integration process with a need for improvisation, 

given the dated guidelines. Specific versions of Microsoft 

C++ build tools and CMake were obtained, followed by 

the cloning of the TensorFlow source code, and the 

isolation of the TFLite C API for compilation via CMake.  

  

 

Table 5 
Training progress and validation performance of the augmented CNN model 

Epoch Train Loss Validation Loss Train accuracy Validation accuracy 

1 0.610516 0.458808 0.658854 0.791667 

2 0.533055 0.455064 0.726563 0.791667 

3 0.486312 0.503732 0.776042 0.708333 

4 0.440375 0.412755 0.804688 0.822917 

5 0.454172 0.46243 0.786458 0.78125 

6 0.44093 0.474301 0.794271 0.802083 

7 0.416042 0.339733 0.822917 0.8125 

8 0.357526 0.326436 0.846354 0.864583 

9 0.310339 0.225828 0.859375 0.927083 

10 0.281315 0.198682 0.882813 0.927083 

11 0.22377 0.145097 0.924479 0.947917 

12 0.205932 0.176522 0.903646 0.9375 

13 0.155941 0.091387 0.960938 0.989583 

14 0.136085 0.088728 0.945313 0.96875 

15 0.085262 0.045295 0.96875 0.989583 

16 0.068302 0.022629 0.973958 1 

17 0.042572 0.032427 0.986979 0.989583 

18 0.026224 0.034359 0.992188 0.989583 

19 0.022774 0.005338 0.994792 1 

20 0.013123 0.005644 0.997396 1 

21 0.009804 0.003717 0.997396 1 

22 0.004549 0.004739 1 1 

23 0.004173 0.001293 1 1 

24 0.003314 0.002429 1 1 

25 0.001897 0.003822 1 1 
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Crafting the appropriate commands for Windows 

environments entailed considerable trial and error, 

ultimately leading to the successful compilation of the 

DLL. 

5.3 Model Integration 

The integration of the TFLite model into the application 

necessitated adherence to guidelines provided by the 

"tflite_flutter" library, coupled with the importation of the 

TFLite library and model files to facilitate seamless 

integration within the application. 

5.4 Converting Image Format 

The adaptation of the image format for model 

compatibility presented substantial challenges. 

Implementation of a file-picking method and drag-and-

drop functionality was undertaken, leveraging external 

libraries to enhance user experience. Additionally, the 

utilization of an Image library for PNG image decoding, 

resizing, and manipulation was employed to align with the 

requisite model dimensions. Subsequent normalization 

and manipulation of RGB values facilitated the creation of 

the necessary input tensor shape for model inference. 

5.5 User Interface (UI) 

The UI component encompassed a login screen and an 

interface for image input to the model. Customized 

window configurations were implemented within the 

main function to ensure optimal display and functionality. 

The login screen, as illustrated in Figure (9.a) showcases 

a simplistic design devoid of a sign-up function, tailored 

for research model interface purposes. Access to the 

model for testing and usage is restricted solely to 

preconfigured accounts stored within the database.  

Upon successful login, users are presented with a model 

interaction screen facilitating drag-and-drop functionality 

for image upload (Figure (9.b)) or browsing of the file 

system (Figure (9.c)). Notably, the run button remains 

disabled until an
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Fig. 9. The Discktop Application with the Integrated Augmented CNN model 

(d) (f) 
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image is successfully loaded to prevent potential errors. 

Furthermore, a reset button is incorporated to allow for 

quick model reset for subsequent testing. 

After successful image upload, the image name, and the 

run button become enabled, as depicted in the figure 

below (Figure (9.d)). Subsequently, upon initiating model 

execution, a progress bar is displayed on the screen 

(Figure (9.e)), with the run button disabled to prevent 

errors during the execution process. The resulting output 

is directly presented on the screen, as depicted in the figure 

below (Figure (9.f)). Once again, the run button is disabled 

to mitigate potential errors, leaving only the reset button 

operational for initiating a fresh model execution cycle. 

6. Conclusion& Future Work 

This research endeavor embarked on a comprehensive 

exploration of machine learning and deep learning 

methodologies for the classification of eye-tracking data 

associated with Autism Spectrum Disorder (ASD). 

Through the integration of traditional machine learning 

algorithms and Convolutional Neural Networks (CNNs), 

this study aimed to discern patterns indicative of ASD-

related visual processing abnormalities, thereby 

contributing to early diagnosis and intervention strategies.  

The proposed system methodology encompassed the 

utilization of meticulously curated datasets, including a 

longitudinal compilation of eye-tracking biomarker 

images obtained from participants spanning various 

developmental stages. Leveraging both traditional ML 

techniques and deep learning frameworks, our 

investigation unveiled nuanced insights into the predictive 

capabilities of these models.  

In the realm of traditional ML, Logistic Regression, K-

Nearest Neighbors (KNN), Support Vector Classifier 

(SVC), Decision Tree, and Random Forest algorithms 

were meticulously trained and evaluated, shedding light 

on their efficacy in discerning ASD-related patterns. 

While SVC and Random Forest emerged as top 

performers, exhibiting robust generalization capabilities, 

KNN demonstrated notable performance variations, 

indicating potential areas for improvement.  

Furthermore, the exploration of CNN models unveiled the 

intricate nuances of deep learning methodologies in ASD 

classification. The training and evaluation of CNN models 

underscored their ability to discern complex patterns 

within eye-tracking data, with both original and 

augmented models exhibiting remarkable performance, as 

evidenced by high validation accuracies.  

The integration of the augmented CNN model into the 

desktop application "TAYF" marks a significant step 

towards clinical deployment, offering clinicians a 

valuable tool for early ASD detection. Despite challenges 

encountered during model conversion and integration, the 

successful deployment of the TFLite model within the 

application heralds promising prospects for real-world 

implementation. 

Overall, this research illuminates the potential of machine 

learning and deep learning techniques in enhancing our 

understanding of ASD-related visual processing 

abnormalities. By leveraging advancements in 

computational methodologies, we stand poised to 

revolutionize early ASD diagnosis and intervention 

strategies, ultimately fostering improved outcomes for 

individuals on the autism spectrum. 

Future research could expand the dataset to include a more 

diverse cohort, encompassing additional age groups and 

demographics to enhance model generalization. 

Integrating multimodal data sources like EEG signals or 

facial expressions alongside eye-tracking data could offer 

a comprehensive understanding of ASD, potentially 

improving classification accuracy. Exploring 

interpretability techniques for deep learning models could 

enhance transparency, aiding clinicians in understanding 

model predictions. Longitudinal studies tracking ASD-

related abnormalities over time could uncover dynamic 

patterns and biomarkers, informing personalized 

treatment strategies. These efforts have the potential to 

advance ASD research and improve diagnostic tools and 

intervention strategies. 
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