

1. Basic Information

Program Title	All academic programs
Department offering the Program	
Department Responsible for the Course	Mathematics and Engineering Physics
Course Code	BAS011
Year/ Level	Primary Year-First Semester
Specialization	Faculty requirement
Authorization data of course specification	

Too ohing House	Lectures	Tutorial	Practical
Teaching Hours	3	2	0

2. Course aims:

No.	Aim	
1	Apply methods of differential calculus and algebra to formulate and solve	
	different engineering problems.	

3. Learning Outcomes (LOs):

A1.1	1	
	and Leibniz's rule, l'hopital rule, binomial theorem, and Eigen Value.	
A 1 2	Discuss mathodologies of differentiation and matrix algebra	
A1.2	Discuss methodologies of differentiation and matrix algebra.	
A8.1	Communicate effectively in writing	
11011		
A9.1	Apply appropriate methods of differentiation and matrix algebra to solve simple	
117.1		
	engineering problems.	

4. Course Contents:

No.	Topics	week
1	Transcendental functions	1-3
2	Inverse of Transcendental functions	4-6
3	derivative of transcendental functions	7-9
4	Mean value theorem, Taylor series and Leibniz's rule	10-11
5	l'hopital rule	12
6	functions of several variables and applied theorems on partial differentiation	13-14
7	Partial Fractions decomposition methods	1-2
8	Theory of equations	3-4
9	mathematical induction	5-6
10	binomial theorem	7-8
11	algebra of matrices, determinants and vectors	9-10
12	Linear Systems	11-12
13	Eigen Value Problem	13
14	Vector space	14

5. Teaching and Learning Methods:

No.	Teaching Method
1	Interactive lectures (hybrid learning)
2	Discussion Sessions
3	Flipped classroom

6. Teaching and Learning Methods for Disable Students:

No.	Teaching Method	
1	Additional Tutorials	
2	Online lectures and assignments	

7. Student Assessment:

7.1 Student Assessment Methods:

No.	Assessment Method	LOs
1	Mid Term Examination	A1.1, A9.1
2	Semester work (Quizzes, presentation, Portfolio)	A8.1, A9.1
4	Final Term Examination	A1.1, A1.2, A9.1

7.2 Assessment Schedule:

No.	Assessment Method	Weeks
1	Mid Term Examination	8
2	Semester work (Quizzes, presentation, Portfolio)	weekly
3	Final Term Examination	15

7.3 Weighting of Assessments:

No.	Assessment Method	Weights
1	Mid Term Examination	17%
2	Semester work (Quizzes, presentation, Portfolio)	10%
3	Final Term Examination	73%
Total		100%

8. List of References

No.	Reference List
1	Akhtar& Ahsan, Textbook of Differential Calculus, second edition, 2009, PHI Learning Private limited.
2	Allan Jeffery, Matrix operations for Engineer and Scientists, 2010, Springer science& business Media.

9. Facilities Required for Teaching and Learning:

No.	Facility
1	Lecture Classroom
2	White Board
3	Data Show System
4	Visualizer
5	Presenter
6	Sound System

10. Matrix of Knowledge and Skills of the Course:

No ·	Торіс	aim	LO's
1	Transcendental functions	1	A1.1
2	Inverse of Transcendental functions	1	A1.1, A8.1
3	derivative of transcendental functions	1	A1.1, A1.2, A9.1
4	Mean value theorem, Taylor series and Leibniz's rule	1	A1.1
5	l'hopital rule	1	A1.1
6	functions of several variables and applied theorems on partial differentiation	1	A1.1, A8.1
7	Partial Fractions decomposition methods	1	A1.1, A9.1
8	Theory of equations	1	A1.2, A8.1, A9.1
9	mathematical induction	1	A1.1, A8.1
10	binomial theorem	1	A1.1
11	algebra of matrices, determinants and vectors	1	A1.1, A1.2, A9.1
12	Linear Systems	1	A1.1, A1.2, A8.1, A9.1
	Eigen Value Problem	1	A1.1, A1.2, A3.1
	Vector space	1	A1.1, A1.2, A8.1, A9.1

Course Coordinator: Dr. Mona Ahmed Sameeh

Head of Department: Prof. Dr. Mohamed Mohamed El Metwally El Gamal

Date of Approval:

Course: Mathematics 1				
Program LOs	Course LOs			
A1. Identify, formulate, and solve complex engineering problems by applying engineering fundamentals, basic science and mathematics.	A1.1 Recognize properties of transcendental functions, different methods of differentiation, elementary row operation on matrices using standard techniques of elimination and algebra of matrices. A1.2 Discuss methodologies of differentiation and matrix algebra.			
A8. Communicate effectively–graphically, verbally and in writing–with a range of audiences using contemporary tools.	A8.1 Communicate effectively ln writing			
A9. Use creative, innovative and flexible thinking and acquire entrepreneurial and leadership skills to anticipate and respond to new situations.	A9.1 Apply appropriate methods of differentiation and matrix algebra to solve simple engineering problems.			