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Abstract 

 

Similarity plays a fundamental role in the human cognition process. It serves as a 
principle of categorization, inductive reasoning, and analogical inference. Spatial 
similarity assessment plays the same role in the retrieval, integration, and data mining of 
spatial information. In this paper, we introduce the basic components of a similarity 
assessment model. The model makes a contribution in the following aspects. First, it 
applies the order of priority topology ?  direction ?  distance into spatial similarity 
assessment. Second, instead of measuring the distance between stimuli, which neglects 
the effect of common features, we adopt Tversky’s feature contrast model, which 
considers both commonality and difference in similarity assessment. Third, our model 
applies spatial alignment, which was considered as an assumption in previous research. 
Fourth, it relaxes the rule used in previous research, which considered identical the 
transformation costs of each edge belonging to a conceptual neighborhood network. In 
order to address this fourth point, we group the topological relationships and introduce 
the concepts of inter- and intra-group transformation costs. The inter-group 
transformation cost has a higher value than the intra-group transformation cost. We call 
the model TDD for Topology-Direction-Distance. 
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1 Introduction 
Similarity plays a fundamental role in human cognition process. “This sense of sameness 
is the very keel and backbone of our thinking (James, 1890)”. It serves as a principle for 
categorization (Tversky, 1977; Goldstone, 2004). Most theories assume that 
categorization depends on the similarity of the samples (Medin et al., 1993). Inductive 
reasoning and memory retrieval (Goldstone, 2004) depend on similarity to retrieve cues 
from previous events. Similarity is also the basic element for analogical inference 
(Markman, 1997). In analogy, it is by similarity that one domain can be extended to 
another. Spatial similarity assessment (Rodríguez and Egenhofer, 2003; Rodríguez and 
Egenhofer, 2004) plays the same role in the process of spatial information retrieval, 
spatial information integration, and spatial data mining. Geographic Information systems 
depend on spatial similarities among spatial scenes to retrieve information, provide inter-
connection among different databases, and classify spatial objects or spatial phenomena.  

Spatial similarity assessment is different from document similarity assessment in which 
the focus is on matching keywords. Spatial similarity involves many different elements, 
such as spatial relationships, spatial distribution, geometric attributes, thematic attributes, 
and semantic relationships. Different applications may have different requirements and 
priorities on similarity elements. Spatial similarity assessment is also a cognitive process 
that must be consistent with human cognition. 

There is a gap between previous work in spatial similarity assessment and the work in 
similarity developed in the field of psychology. Commonality between a stimuli pair, 
structural alignment, and similarity asymmetry are emphasized in similarity work done in 
Psychology; however they are neglected in spatial similarity assessment. According to 
Tversky (1977), commonality increases similarity more than difference decreases it. 
Previous work measured spatial similarity through differences between the stimuli pair. 
The commonality is usually treated as a zero distance and has no contribution to the 
similarity at all. Similarity alignment has been treated as an assumption in spatial 
similarity assessment. However, similarity alignment does not always happen. Nedas and 
Egenhofer (2003) mentioned that “a particular problem with comparing spatial 
configurations for similarity appears when the two items to be compared are of different 
cardinality”. Strategies that differentiate aligned comparison and non-aligned comparison 
are needed. The difference of aligned comparison and non-aligned comparison should be 
reflected in the spatial similarity measurement. Furthermore, similarity is believed to be 
asymmetric in the field of psychology. Similarity asymmetry means that the similarity of 
A in relation to B is different from the similarity of B in relation to A. It is a context-
dependent issue. So far, few strategies have been worked out to evaluate similarity 
asymmetry in spatial similarity measure. 

In this paper we try to bridge the gap between research in spatial similarity assessment 
and research in Psychology dealing with similarity assessment. Our model, called TDD 
for Topology-Direction-Distance, makes contributions in the following aspects. First, it 
integrates the four dominant psychological similarity models (geometric model, feature 
contrast model, structural alignment model and transformation model) and applies them 
to the assessment of spatial relationship similarity. Instead of measuring the distance 
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between stimuli, which neglects the effect of common features, our model measures both 
commonality and difference. In the difference assessment, we differentiate the aligned 
difference and the non-aligned difference. Our model also relaxes the rule used in 
previous research which considered identical the transformation costs of each edge 
belonging to a conceptual neighborhood network. In order to address this point, we group 
the topological relationships and introduce the concepts of inter- and intra-group 
transformation costs. The inter-group transformation cost has a higher value than the 
intra-group transformation cost. Second, our research applies the order of priority 
topology ?  direction ?  distance into spatial similarity assessment through weights 
setting, which satisfies the consistency with spatial cognition (Renz, 2002a). 

This paper is organized as follows. Section 2 clarifies the spatial similarity terminology 
used in the paper, reviews psychological similarity models and the spatial similarity 
assessment approaches. Section 3 gives an introduction to our model. In Section 4, we 
analyze in more depth how our model is applied to address the relationship measurements 
(topological, directional, and metric-distance). In Section 5, we use an example to make a 
comparison of the TDD similarity measurement with a transformation model, the 
Bruns/Egenhofer model. Section 6 implements a visualization of the TDD model through 
an extended parallel coordinate plot (PCP) structure. Finally, section 7 presents our 
conclusions and future research. 

2 Literature Review 
We start by reviewing the terminologies used in similarity research. The main terms are 
relational similarity, attribute similarity, structural alignment, similarity asymmetry, and 
context-dependent similarity. Following, we discuss four widely accepted similarity 
models in the field of psychology which are the geometric model, the feature contrast 
model, the structural alignment model, and the transformation model. Finally, we discuss 
how spatial similarity is addressed in previous work. We will see that the literature 
mainly addresses spatial relationship similarity through the conceptual neighborhood 
approach and the projection-based approach. 

2.1 Terminology 

2.1.1  Relational Similarity and Attribute Similarity 

Goldstone et al. (1991) and Medin et al. (1993) deal with the distinction between 
relational similarity and attribute similarity. An attribute refers to a component or a 
property of a stimulus. Therefore, the attribute similarity between a pair of stimulus 
means how similar their attributes are. Whereas the relational similarity of a pair of 
stimulus refers to how similar the relations of their attributes are. Goldstone gave the 
following example to illustrate these two concepts.  
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Figure 1 - Relational similarity and attribute similarity 

In Figure 1, A and C have more attribute similarities than relational similarities because 
they have the same attributes (circle and triangle) but different relations between the 
attributes (above and right-of). By contrast, B and A have more relational similarities 
than attribute similarities since they have different attributes (circle/triangle and 
square/star) but the same relation between those attributes (above).  

2.1.2 Structural Alignment, Aligned Difference, and Non-aligned Difference 

One of the dictionary meanings of alignment (Webster, 1996) is “the act of adjusting or 
aligning the parts of a device in relation to each other”. Medin et al. (1993) defined 
alignment as “the process by which entities associated with the object of comparison are 
put into correspondence”. The concept of structure alignment is derived from the models 
of analogical reasoning (Gentner, 1983; Gentner, 1989; Markman, 1996). As analogies 
are based on matching relations between two items, structural alignment focuses 
similarity comparisons on matching relations between the items being compared 
(Markman, 1996). After structure alignment, similarity measurement generates three 
kinds of results: commonalities, aligned differences, and non-aligned differences 
(Markman and Gentner, 1993; Medin et al., 1993; Gentner and Markman, 1994; 
Markman and Gentner, 1996). Commonality refers to the shared relations, features, or 
attributes, among stimuli. Aligned difference is the difference among corresponding parts 
of stimuli. Non-aligned difference is the difference among non-corresponding parts of 
stimuli. 

2.1.3 Similarity Symmetry and Similarity Asymmetry 

Traditionally, similarity is viewed as a symmetric relation. That is, the similarity from A 
to B equals to the similarity from B to A. It is also assumed that judgments of similarity 
and difference are complementary: the more similarity, the less difference, and vice versa 
(Tversky, 1977). However, similarity is believed to be asymmetric and directional by 
many current researchers.  In Tversky’s (1977) contrast model, feature commonalities 
tend to increase perceived similarity more than feature differences can diminish it. The 
structure alignment model shows that similarity judgments focus on matching relations 
between items, while difference judgments focus on the mismatching attributes (Medin et 
al., 1990; Goldstone et al., 1991; Markman, 1996). Therefore, when A is more similar to 
T than B is, it is possible that A is also more different from T than B is. 

2.1.4 Similarity in Context 

Similarity is dynamic and context dependent (Medin et al., 1993). Murphy and Medin 
(1985) noted that, according to Tversky’s (1977) feature theory of similarity, “the relative 
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weighting of a feature varies with the stimulus context and task, so that there is no unique 
answer to the question of how similar is one object to another”. Goodman (1972) claimed 
that the similarity of A to B is an ill-defined, meaningless notion unless one can say “in 
which respects”. In general, the relevant feature space is not explicitly specified but 
rather inferred from the general context (Tversky, 1977). Due to the separable stimuli, 
such as figures varying in color and shape, or lines varying in length and orientation, 
subjects sometimes experience difficulties in evaluating overall similarity and 
occasionally tend to evaluate similarities with respect to one factor or the other (Shepard, 
1964) or change the relative weights of attributes with a change in context (Torgerson, 
1965). Moreover, assessment of similarity varies with factors such as processing time and 
previous experience (Medin et al., 1993). Medin believes that in the structural alignment 
model, what gets aligned is not fixed a priori but depends on the particular comparison. 

2.2 Similarity Models in the Field of Psychology 

Four similarity models are broadly accepted in the field of psychology. They are the 
geometric model, feature-based contrast model, structure alignment model, and the 
transformation model. 

2.2.1 Geometric Model 

The geometric model is the dominant model in theoretical similarity analysis (Torgerson, 
1965; Tversky, 1977; Goldstone, 2004). This model represents stimuli as points in a 
multidimensional space and the similarity of stimulus pair is reflected by the vector 
distance between the two corresponding points in that space (Tversky, 1977; Thomas and 
Mareschal, 1997; Markman, 2001; Nedas and Egenhofer, 2003; Goldstone, 2004). 
Naturally, the geometric model obeys the metric axioms of Minimality, Symmetry, and 
Triangle Inequality (Tversky, 1977; Thomas and Mareschal, 1997; Goldstone, 2004). 
However, it has been criticized by Tversky (1977) as not being the case with 
psychological notions of similarity since human similarity judgments violate the above 
three axioms. Minimality is violated because not all identical objects are equally similar. 
Complex objects that are identical (e.g. two spaceships) have more similarity than 
simpler identical objects (e.g. two balls). In the metric space, similarities are the same 
whatever the order of the comparison is, whereas similarities are believed to be 
asymmetric and directional. For example, Japanese culture is more similar to Chinese 
culture than Chinese culture is to Japanese culture since many features of the Japanese 
culture come from Chinese culture. Triangle inequality can be violated when A (e.g. a 
lamp) and B (a moon) share an identical feature as both provide light; B (a moon) and C 
(a ball) share an identical feature as both are round; however A and C share no feature in 
common (Tversky and Gati, 1982). 

2.2.2 Feature-Based Contrast Model 

The feature-based contrast model assumes that objects are represented as collections of 
features, and similarities among objects are expressed as a feature-matching process 
among common and distinctive features (Tversky, 1977; Markman, 2001; Goldstone, 
2004). Similarities of a stimuli pair increase with its commonalities and decreases with its 
differences. The common features of a stimuli pair are those elements in the intersection 
of the feature sets. The distinctive features of a stimuli pair are those elements outside of 
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the intersection of the feature sets. In this model, the similarity of a stimuli pair increases 
with the size of the common features set and decreases with the size of the distinctive 
features set (Markman, 1993). The similarity of A to B is expressed as a linear function 
of the common and distinctive features. Tversky claims that feature commonalities tend 
to increase perceived similarity more than feature differences can diminish it. That is, 
commonalities get higher weights than differences do. 

2.2.3 Structure Alignment Model 

The structure alignment model, inspired in analogical reasoning, indicates that 
similarities come not only from the matching of common and different features, but also 
from the alignment of features (Markman, 1993; Goldstone, 1998; Goldstone, 2004). 
Usually, in the comparison of a stimulus pair, the parts of one object must be aligned or 
placed in correspondence with the parts of the other (Goldstone, 1994). In this model, 
outputs of a similarity comparison process include commonalities, aligned differences, 
and non-aligned differences (Markman and Gentner, 1993; Medin et al., 1993; Gentner 
and Markman, 1994; Markman and Gentner, 1996). It has been widely recognized that 
similarity comparisons involve structural alignment instead of simple feature matches 
(Gentner, 1983; Gentner, 1989; Medin et al., 1990; Markman, 1993; Markman and 
Gentner, 1993; Medin et al., 1993; Gentner and Markman, 1994; Goldstone, 1994). 
Medin also argued that structure and global consistency are more important in the process 
of similarity determination than simple local matches. He also pointed out that what gets 
aligned is not fixed a priori but depends on the particular comparison. Markman (1996) 
concluded that similarity judgments focus on matching relations between items, while 
difference judgments focus on mismatching attributes. 

2.2.4 Transformation Model 

The transformation model measures similarity through the use of transformational 
distance (Imai, 1977; Hahn and Chater, 1997; Goldstone, 2004). The concept of 
transformational distance is defined as a function of the complexity required to transform 
the representation of one stimulus into the representation of another. According to 
Kolmogorov complexity theory (Goldstone, 2004), given a set of vocabularies, the 
complexity of a transformation is the shortest length the computer program needs to 
move from one vocabulary to another. In other words, the similarity between two entities 
is the smallest number of operations that a computer program needs to transform one 
entity into the other. 

2.3 Spatial Similarity Assessment 

Spatial similarity is hard to address because of the numerous constraints of spatial 
properties and of the complexity of spatial relations. Since it is believed that spatial 
relations, mainly topology, direction, and distance, capture the essence of a scene’s 
structure (Bruns and Egenhofer, 1996), most research focus on the similarity assessment 
of spatial relations. The two dominant approaches adopted in spatial similarity 
assessment are conceptual neighborhood approach and projection-based approach.  

The conceptual neighborhood approach is based on the transformation model, in which 
similarity is measured according to the distance between two concepts in a network. It 
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computes the shortest path between two nodes in the network. The distance is calculated 
as the number of edges between them (Rada et al., 1989; Budanitsky, 1999). The fewer 
edges between them on the network, the more similarities they share (Quillian, 1968). 
This approach has been widely used in assessing spatial relationship similarity. 

Egenhofer and Al-Taha (1992) derived gradual changes of the topological relationship 
based on Egenhofer’s 9-intersection model. They created a conceptual neighborhood of 
the topological relationship as Figure 2-a illustrates. When changes happen, such as scale, 
translation, and rotation, the process can be described as a sequence of movements over 
the neighborhood network. If the distance from disjoin (x, y) to meet (x, y) is set as 1, the 
distance from disjoin (x, y) to covers (x, y) should be 3. 
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Figure 2 - Conceptual neighborhood of topological relations (a) Egenhofer’s and (b) Freksa’s 

Freksa (1992a) created the conceptual neighborhood network based on Allen’s 1-D 
interval relations (Allen, 1983) (Figure 2-b). Papadias and Dellis (1997) extended this 
model into a higher dimensional space to address spatial relationship similarity on 
topology, direction and metric distance. 

Chang and Lee (1991) derived the conceptual neighborhood network of 169 possible 
spatial relations between rectangles also from applying Allen’s 1-D interval relations to 
orthogonal projections. Bruns and Egenhofer (1996) captured spatial relationship 
similarity over Chang and Lee’s graph by combining the distance conceptual 
neighborhood model. They describe the similarity measuring process as “one scene is 
transformed into another through a sequence of gradual changes of spatial relations. The 
number of changes required yields a measure that is compared against others, or against a 
pre-existing scale. Two scenes that require a large number of changes are less similar 
than scenes that require fewer changes.” 

Most research considers direction in a two-dimension space with a point as reference. 
This is the case of the projection-based approach (Frank, 1996; Ligozat, 1998). A 
projection-based model divides the space with a horizontal line and a vertical line. The 
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two lines represent the 4 directions: north, west, south, and east. The regions between 
these two lines represent the secondary directions: northwest, southwest, southeast, and 
northeast. It was argued that the projection model has advantages over the cone model 
(Frank, 1991) in implementation due to the rectangular nature of the directional partition 
(Goyal, 2000).  

The projection-based approach projects spatial objects and their relations onto another 
space, which can be a vector space or a matrix space. This way the problem of similarity 
assessment shifts from the comparison of objects in spatial scenes to that vector or matrix 
space. The famous 2D String symbolic representation is an example of projection-based 
approach (Chang et al., 1987), in which spatial objects and their relationships are 
represented by 2D strings along x and y axes. The similarity assessment between two 
scenes is then treated as it was a string matching. Chang defines three types of similarity 
criteria, type-0, type-1 and type-2. Type-0 is the most generous one. It is fulfilled when 
two objects have the same relationship on either the x- or the y-axis. Type-1 requires that 
two objects have the same relations on both the x- and y-axis. Type-2 requires not only 
two objects to have the same relations but also that they have the same rank of the 
relative positions.  

Goyal and Egenhofer (2001) combines the conceptual neighborhood approach and the 
projection-based approach for distance similarity measurement. In their work, the 
directional space is projected into a 3*3 matrix, which represents the nine directions 
(north, northwest, west, southwest, south, southeast, east, northeast, and same). Each 
sector of the matrix specifies how much of a target object falls into the direction it 
represents. The similarity of a cardinal direction is determined by the least cost of 
transforming one direction-relation matrix into another. 

Because of the focus of our work, in this review we reviewed more work on the 
terminological and psychological than on the spatial aspects of similarity. Nevertheless is 
worth mentioning that research in spatial similarity range from assessment (Holt and 
G.L.Benwell, 1997; Bishr, 1998; Holt, 1999; Rodríguez et al., 1999; Rodríguez and 
Egenhofer, 2003; Rodríguez and Egenhofer, 2004) to qualitative spatial reasoning (Dutta, 
1989; Freksa, 1992b; Cohn and Hazarika, 2001; Renz, 2002b), topological relationships 
(Egenhofer and Franzosa, 1991; Randell et al., 1992; Egenhofer, 1993; Egenhofer, 1994; 
Egenhofer et al., 1994; Egenhofer and Franzosa, 1995; Cohn and Varzi, 1998; Cohn and 
Varzi, 1999), directional relationships (Hernandez, 1994; Frank, 1996; Ligozat, 1998; 
Goyal and Egenhofer, 2000; Cohn and Hazarika, 2001; Renz, 2002b), metric distance 
(Clementini et al., 1994; Hernandez et al., 1995; Cohn and Hazarika, 2001; Renz, 
2002b), conceptual neighborhood approach (Allen, 1983; Rada et al., 1989; Egenhofer 
and Al-Taha, 1992; Freksa, 1992a; Papadias and Dellis, 1997; Budanitsky, 1999), and 
projection-based approach (Chang et al., 1987; Papadias et al., 1999; Goyal and 
Egenhofer, 2001). 
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3 The TDD Model to Measure Similarity between 
Spatial Scenes 

Our model provides a similarity measure that integrates four widely accepted conceptual 
similarity models which are the geometric model, the feature contrast model, the 
transformation model, and the structure alignment model. It measures both 
commonalities (C) and differences (D) between spatial scenes. The final similarity 
measurement (S) is a combination of both, S = C - D. The structure alignment model 
considers that in the comparison of a stimulus pair, the parts of one object must be 
aligned or placed in correspondence with the parts of the other. Therefore, the output of 
the similarity comparison process includes commonalities, alignable differences, and 
non-alignable differences. Our model treats alignable differences and non-alignable 
differences separately, D = (alignable difference + non alignable difference).  

Our model addresses both relational similarity and attributes similarity (Table 1). 
Considering that relational similarity and attribute similarity have different impacts on 
the commonality judgment and difference judgment (Tversky, 1977), different weights 
might be applied on them in similarity evaluation of a certain task context. 

Sometimes the similarity of object A in relation to object B is different from the similarity 
of B in relation to A (Tversky, 1977). This situation is called similarity asymmetry. It is a 
context-dependent issue. Depending on the task context, different attributes or relations 
will have more or less relevance in the similarity evaluation. Our solution to address this 
problem is to have different weights associated with each attribute and each relation. 
Users of our model may set the weights interactively so that they reflect the particular 
situation in which the similarity measurement is being made. 

Other contributions of our model include applying the order of priority topology à 
direction à distance into spatial similarity assessment and the relaxation of the 
transformation cost. Both features are implemented through the weight setting. The 
details are discussed later in this section. 

In order to be able to take an initial step in the implementation of our model we opted to 
limit our scope. In this work we deal only with scenes with two objects. Therefore, spatial 
distribution is not measured. Another limitation refers to the three levels of spatial 
similarity addressed by Rodriguez et al. (1999). In our model we deal with the geometric 
and the thematic levels only. We leave the semantic level for future work. 

Another interesting question that we left out is the combination of topology and the 
metric characteristics of the spatial objects under consideration. For instance, consider the 
case in two scenes with both having two objects separated by distances that are largely 
different. Consider also that although the distances highly differ in their absolute value 
they still are proportional to the objects’ sizes. Godoy and Rodriguez (2004) consider 
explicitly the relation of metric measurements and topological relations showing its 
importance in the evaluation of similarity.  
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Next we will analyze the basic spatial similarity elements addressed by our model; 
explain the similarity alignment in which this model is based on; and finally introduce the 
similarity measurement that this model applies. 

3.1 Spatial Similarity Elements 

Our model measures the similarity between spatial scenes. A spatial scene is comprised 
of spatial objects. We consider three different types of spatial objects: a point, such as a 
city or a factory, a line, such as a road or a river, and a polygon, such as a state or a 
county. The types of spatial scenes we address in our model are (1) scenes with only one 
spatial object in it, (2) scenes with two spatial objects in it, and (3) scenes with three or 
more spatial objects in it. A scene with a single spatial object is the simplest type of 
stimulus. For instance, in the query ‘finding the states that are similar to Georgia’ each 
state in the U. S. is considered a scene with one spatial object (the state boundary itself). 
Since there is only one object in each scene, no relational similarity is evaluated. 
Geometric and thematic attributes of each state are compared with those of Georgia in the 
similarity assessment process. In the case of scenes with two spatial objects, then, besides 
the geometric and thematic attributes of each spatial object, the spatial relationships 
between objects in each scene and the attribute-distance relationships between these two 
spatial objects are also measured. Similarity evaluation for scenes with three or more 
spatial objects is more complex. It is necessary to measure also the distribution of objects 
and attributes besides measuring the similarity between geometric and thematic 
attributes. 

A spatial scene may be composed of one or more layers. For instance, a scene describing 
the distribution of population and water in Pennsylvania may include a layer with 
administrative boundaries such as counties, and a hydrology layer with rivers and lakes. 
In addressing similarity of such scenes, besides scene- level comparison, there is also 
layer- level comparison. Scene-level comparison investigates the overall relationships of 
each scene. In layer- level comparison we are interested in comparing objects in each 
layer of the scenes. Comparisons at this level would include the geometric attributes (e.g., 
the type of spatial object, location, area, and length) and thematic attributes (e.g., 
population and income). We call the similarity measured in scene- level comparison 
relational similarity and we call the similarity measured at the layer- level object 
similarity. Therefore, regarding the measurement itself, we consider two levels in our 
model. One is the scene level and the other, related to layers, is the object level. At the 
scene level we are interested in finding and measuring relationships. At the object level 
we are interested in measuring attributes. The relationships are further divided into spatial 
relationships and non-spatial relationships. The attributes are classified as geometric and 
thematic attributes (Table 1). 
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Level of 
comparison 

Types of similarity measured 

Topological 

Direction 

Metric distance 

Spatial 

Distribution 

Scene Relationships 

Non-spatial Attribute distance 

Geometric Types of objects Object Attributes 

Thematic Attribute comparison 

Table 1 - Basic elements in the spatial measurement process 

Geometric attributes are those attributes that relate to geometric features of the spatial 
objects, e.g., location, length, area, slope, and shape. Thematic attributes identify or 
describe the thematic features of spatial objects, such as population, road types, or the 
time of an event. Relationships between objects include the topological relationship, the 
directional relationship and the metric distance relationship. The relationships between 
attributes include the average attribute distance between two spatial objects. The 
distribution of objects and attributes is measured only when there are three or more 
spatial objects in a scene. We borrow from spatial statistics the three types of distribution 
considered here: regular, random, and aggregated patterns.  

Here we consider geometric attributes in a two-dimensional space only. For a polygon 
object, the geometric attributes are center location, minimum bounding box, shape, 
perimeter, and area. For a line object, they are center location, end-points location, 
minimum bounding box, slope, and length. For a point object, it is only location. 

Thematic attributes are the various thematic variables of spatial objects. They are 
classified into two types: qualitative attributes and quantitative attributes. Qualitative 
attributes are those variables that identify the classification (type of a road) or identify the 
entity (name of a city). Quantitative properties are those numerical variables (population 
of a state). The available thematic attributes can be selected through human-computer 
interaction and then be applied into similarity evaluation depending on the different tasks. 

3.2 Spatial Similarity Alignment 

Alignment refers to “the process by which entities associated with the object of 
comparison are put into correspondence” (Medin et al., 1993). When of the measurement 
of spatial similarity there exists alignable comparison and non-alignable comparison. 
Alignment and non-alignment happen in both scene-level and object- level comparison.  
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In scene- level comparison, two stimuli (scenes) are alignable if they are the same type of 
scenes, and are non-alignable if they are different type of scenes. For example, a scene 
with one object is non-alignable with a scene with two objects; a scene with two objects 
is alignable with another scene with two objects. It is important to note that scene- level 
alignment should not be considered as simple as the alignment of the same number of 
objects. Scene- level comparison investigates the overall relationships of each scene. 
Scenes with different number of objects are different because these scenes may differ 
greatly in terms of spatial relationships and spatial distribution although not being that 
much different in terms of the number of objects.  

At the object- level, the minimum requirement for two stimuli (objects) to be alignable is 
that they come from the same thematic layers. If we have a more detailed comparison 
context, object attributes need also to be considered in the alignment conditions. As 
Medin (1993) points out, what gets aligned is not fixed a priori but depends on the 
particular context of the comparison. For instance, in the scenes shown in Figure 3, if 
thematic information about objects A, B, C, and D is not available, the comparison may 
be measured only at the scene level. In this case, A is considered aligned to D1. If, for 
instance, A and C are restaurants and B and D are parking lots, A would be considered 
aligned to C instead of D. 

  

A

B

Scene 1

D

C

Scene 2  

Figure 3 - Issues in scene-level alignment 

3.3 Spatial Similarity Measurement 

The conceptual neighborhood network approach, which applies the transformation 
model, is the traditional approach for measuring the similarity of relationships among 
spatial objects. As described before, each type of spatial relationship has its own 
conceptual neighborhood network. Similarity between two statuses of a spatial 
relationship is measured as the transformational distance of those two statuses over the 
network. The distance is measured as the number of edges that needs to be crossed in 
going from one status to the other over the network. The fewer edges passed from one 
status to the other, the more similar the statuses are. However, this traditional approach 
has some deficiencies. 

                                                 
1 According to our direction network (shown in more detail [0] in Figure 6-a), Direction(A, B) = {north, 
south}; Direction(B, A) = {south, north}; Direction(C, D) = {southeast, northwest}; Direction(D, C) = 
{northwest, southeast}. The cost of the transformation from one node to its neighbor is 2. The cost for 
switching the direction inside a node is 1. Therefore, Distance[(A, B), (D, C)] = 2 and Distance[(A, B), (C, 
D)] = 2 + 1 = 3. When there is no thematic information for the objects, our model considers the comparison 
which has a smaller distance as a better alignment. Hence, A would correspond to D. 
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First, the traditional approach evaluates differences instead of similarities. It measures the 
distance between two stimuli and considers that the less distance they have, the more 
similar they are. Commonality is counted as a zero distance, which has no contribution to 
increase the final similarity value. Our measure of similarity (Equation 1) evaluates both 
the commonality ( ),( BAC ) and the difference ( ),( BAD ) (Equation 2). The final 
similarity measurement (S) is a combination of both, S = C - D. Refining the formula one 
level down takes us to consider the scene and object levels. For both S and D we have 
measurements at both levels giving 

S = (Cscene + Cobject) - (Dscene + Dobject) 

Scene measurements include all the relationship measurements, namely the topological, 
direction, and metric-distance relationships giving  

Cscene = (Ctopological + Cdirectional + CmetricDistance ) 

At the object level we have measurements for the commonalities and differences of 
geometric and of thematic attributes giving  

Cobject = (Cgeometric + Cthematic) 

We use the weights βαθ ,, for commonality, aligned-difference and non-aligned-
difference as shown in equations 1, 2 and 3. Tve rsky (1977) claims that feature 
commonalities tend to increase perceived similarity more than feature differences can 
decrease it. Therefore, commonalities should have higher weights than differences 
(Equation 3). Weights can be set to different values depending on the task context. The 
weights are ? for commonality, a for aligned difference, and ß for non-aligned difference. 
Their values are set by default as 5.1=θ ; 1=α ; 1=β  or 0=β . The expression 0=β  
means that no non-aligned difference exists. Over a certain conceptual neighborhood 
network, the value of commonality and the value of non-aligned-difference is equal to the 
highest transformation cost over this network. The value of the aligned-difference is 
equal to the transformation cost between the two stimuli. 

∗−−= |,,|),( βαθBAS

commonality

aligned difference

non-aligned difference

),(* BADycommonalit −= θ

 
Equation 1 

 

∗= |,|),( βαBAD
aligned difference

non-aligned difference
 

Equation 2 
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αθ > , βθ >   (By default: 5.1=θ ; 1=α ; 1=β  or 0=β ) 

Equation 3 

 

The second deficiency of the traditional approach is that the three types of spatial 
relationships (topological, direction and metric distance) are treated with the same 
priority. However, when children acquire the spatial notions, the order is topology ?  
direction ?  metric distance, in which topology affects the acquisition of spatial notions 
most and metric distance affects it the least  (Renz, 2002a). Therefore, to be consistent 
with spatial cognition, the order is topology ?  direction ?  metric distance. In this case, 
topology affects the acquisition of spatial notions the most and metric distance affects it 
the least. Therefore, our work on similarity assessment takes this order into account. The 
strategy that we adopted here is to reflect that order by setting weights of transformation 
costs on the three types of spatial relationship differently as Equation 4 shows. The 
default values for weights are 3:2:1 corresponding to  

tance)weight(disection)weight(dirology)weight(top >>  
By default: 3:2:1distance)t(metricion):weighght(directology):weiweight(top =⋅  

Equation 4 

Finally, the traditional approach counts the number of edges from one status to another 
status over the network as the distance between these two statuses. This method of 
computation assumes that each edge represents the same distance. However, over the 
topological conceptual neighborhood network, the distances represented by each edge are 
different. We refine the solution of this problem by grouping the topological relationships 
and proposing the concepts of inter- and intra-group transformation costs on the edges of 
the conceptual neighborhood network. The model of transformation cost can be described 
as Cost (inter group) > Cost (intra group) > Cost (intra sub group). 

group)sub(intraCost   group)(intraCost   group)(interCost >>  

By default: 1:2:3  group)sub(intraCost  : group)(intraCost  : group)(interCost =  

Equation 5 

Our model is described by the above equations. We discuss next the details of how our 
model deals with the similarity of topological, directional, metric-distance relationships 
and the two type of attributes (geometric and thematic). 

4 Measuring the Similarity of Spatial Relationships 
As shown in Table 1, the similarity measurements taken into the consideration by the 
model are related to relationships and attributes. In this section we give the details of the 
relationship measurements (topological, directional, and metric-distance). The two 
attribute measurements (geometric and thematic) are discussed in the section that deals 
with the computational implementation.  
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4.1 The Topological Relationship 

In the traditional network, the transformation costs on all the edges are assumed to be the 
same. The fewer edges in the path between two nodes, the more similarities these two 
nodes share. However, we believe that in the case of topological relationships, different 
edges should have different transformation costs. Considering the conceptual network 
between two polygons (Figure 4-a in which (1) contain and inside are merged as contain, 
and (2) covered by and covers are merged as contain&meet, the six nodes can be divided 
into three groups: disjoin, overlap in different levels, and equal. Nodes of meet, overlap, 
contain and contain&meet can all be seen as overlap in different levels. Our work 
differentiates inter- and intra-group costs. If two nodes belong to different groups, the 
transformation cost is called inter-group cost; otherwise, the transformation cost is called 
intra-group cost. Intra-group cost is less than inter-group cost because the former is a 
measure of internal transformation and the latter is a measure of across transformation. 
Directed by this principle, in Figure 4-a, the inter-group cost is set as 3, while the intra-
group cost is set as 2 with an exception of transforming from contain to contain&meet. 
Nodes of contain and contain&meet can be considered as a sub-group within the group of 
overlap in different levels, hence the transformation cost is set as 1 which is one degree 
less than the intra-group cost. 

(a) (b)

(c) (d) (e) (f)
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disjoin
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33
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:
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Figure 4  - Conceptual neighborhood network of topological relationships: (a) two polygons; (b) a line 
and a polygon; (c) a point and a polygon; (d) two lines; (e) two points; (f) a point and a line 

The conceptual neighborhood networks of the topological relationships between other 
types of spatial objects (1 - two points, 2 - point and a line, 3 - a point and a polygon, 4 - 



Li, B. and F. T. Fonseca (2006). "TDD - A Comprehensive Model for Qualitative Spatial Similarity 
Assessment." Spatial Cognition and Computation 6(1): 31-62. pre print version 

16 

two lines, and 5 - a line and a polygon) are derived using the schemas shown in Figure 4-
a. The derivation principle is as following. First, duplicate the topological relationship 
model between two polygons no matter what types of spatial objects the scene has. 
Second, cut off the duplication and the impossible nodes and edges connected with them. 
For example, in the relationship between a point and a polygon, in Figure 4-c, overlap 
and contain&meet between a point and a polygon are duplications of meet. Moreover, it 
is not possible to have an equal topology between a point and a polygon. Third, apply the  
transformation cost. When two edges merge into one edge because of duplication, the 
weight for the final edge is the sum of the original two. For the path from meet to contain, 
in Figure 4-a, there are two edges with weight of 2 on each of them; however in Figure 4-
c, overlap is cut off and there is only one edge left with the weight of 422 =+ . 

4.2 The Directional Relationship 

Most researchers adopt the 9-direction system {north, northwest, west, southwest, south, 
southeast, east, northeast, and equal} to represent directions. The corresponding 
conceptual neighborhood network could be represented as Figure 5-a shows. If the 
transformation cost from any direction to its neighbor is set as 2, the distance is 4 from 
east to north, and 8 from east to west. Consequently, ),( PCScene  is more similar to 

),( PAScene than ),( PBScene  or ),( PDScene are (Figure 5-c) since 
8]A,P),(B,P)Distance[( = , 6=]A,P),(D,P)Distance[( , while 4]A,P),(C,P)Distance[( =  

(Figure 5b). However, intuitively, ),( PBScene is more similar to ),( PAScene  than 
),( PCScene is since both ),( PBScene  and ),( PAScene  are horizontal scenes, while 
),( PCScene  is a vertical scene. 

Our work assumes that p/2 is the largest directional distance among spatial scenes with 
two objects. A p/2-directional network (Figure 6-a) is used to replace the network of 
Figure 5-a. There are five nodes in the p/2 directional network (Egenhofer and Franzosa, 
1995): {east, west}, {northeast, southwest}, {north, south}, {northwest, southeast}, and 
{same}. The cost of the transformation from one node to its neighbor is 2.  The cost for 
switching the direction inside a node is 1. An example of the switching transformation is 
switch (east, west) to (west, east). In Figure 5-b, on the p/2-directional network, 

1]A,P),(B,P)Distance[( =  because ),( PAScene  and ),( PBScene  are located on the 
same node {east, west} with a different internal direction; 

4]A,P),(C,P)Distance[( = because there are two edges between the nodes on which 
),( PAScene  and ),( PCScene  are located. The case of the distance between ),( PAScene  

and ),( PDScene  is more complicated. There is only one edge between the nodes on 
which ),( PAScene  and ),( PDScene  are located. However, the angle between 

AP and DP  is more than p/2. In order to be able to apply the p/2 directional network we 
need to make the angles equals (the angle - p/2) instead. Besides the transformation 
between the two nodes, there is also a switching in the internal direction. So the distance 
is 312 =+ . 
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Figure 5 - (a) Traditional direction network; (b) pattern examples; (c) ranking of similarity for the 
patterns in (b) 
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Figure 6 - (a) direction network; (b) pattern examples; (c) ranking of similarity for the patterns in (b) 

4.3 The Metric Distance Relationship 

This work adopts the traditional 4-granularity ({equal, near, medium, far}) metric 
distance network (Figure 7) to measure the similarity of metric distance relationship 
between a pair of spatial scenes. There are four nodes and three edges on this network. 
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On each edge, the transformation cost is set as 1. If in one scene, the metric distance 
between the two objects is near, while in the other scene, the metric distance between the 
two objects is far, the transformation cost is 1 + 1 = 2. 

1

1

equal
near

medium

far1

 

Figure 7 - Metric distance network 

 

5 A Comparison with the Bruns-Egenhofer Model 
In this section we use an example to make a comparison of the TDD similarity 
measurement with a transformation model, the Bruns/Egenhofer model (1996). There, 
similarity is measured as the number of transformations necessary to go from one node 
on a network to another node. The less transformations between two nodes, the more 
similarity these two nodes share. 

Consider the following 5 scenes, (A, L), (B, L), (C, L), (D, L) and (E, L), in Figure 8.  

 

Figure 8 - Five scenes to be compared using the two models 

Their spatial relationships are: 

Scene(A, L) = {meet, (northeast, southwest), equal} 
Scene(B, L) = {meet, (northwest, southeast), equal} 
Scene(C, L) = {intersect, (west, east), equal} 
Scene(D, L) = {disjoin, (southeast, northwest), near} 
Scene(E, L) = {disjoin, (northeast, southwest), medium} 
 

Using our TDD model to compare the distance and similarity between scene (A, L) and 
the other four scenes we have  

Distance[(A, L), (B, L)] = {0, 4, 0} = 4 
Distance[(A, L), (C, L)] = {2, 3, 0} = 5 
Distance[(A, L), (D, L)] = {3, 2, 1} = 6 
Distance[(A, L), (E, L)] = {3, 0, 2} = 5 
 
Similarity[(A, L), (B, L)] = 10.5 – 4 + 4.5 = 11 
Similarity[(A, L), (C, L)] = -2 – 3 + 4.5 = -0.5 
Similarity[(A, L), (D, L)] = -3 – 2 - 1 = -6 
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Distance[(A, L), (E, L)] = -3 + 6 – 2 = 1 

 
giving the following similarity ranking (Figure 9) from most similar to least similar: (B, 
L), (E, L), (C, L), and (D, L). 

 

Figure 9 - Result of the comparison using the TDD model 

The similarity measurement in the Bruns/Egenhofer’s model has a different result from 
the TDD model. In Figure 10 we can see which nodes represent these five scenes.  

 

Figure 10 - The five scenes in the Bruns-Egenhofer model 

 

By calculating the number of transformations from (A, L) to the other four scenes, we 
have the distance measurement as follows 

Distance[(A, L), (B, L)] = 3 
Distance[(A, L), (C, L)] = 3 
Distance[(A, L), (D, L)] = 5 
Distance[(A, L), (E, L)] = 1 

 

Therefore, the similarity ranking based on the Bruns/Egenhofer’s model from most 
similar to least similar is (E, L), (C, L)/(B, L), and (D, L). There are some differences in 
the results from the two models. If we compare (B, L) and (E, L), we can see that (B, L) 
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has the same topological relationship, the same distance relationship, and a different 
directional relationship from (A, L). However (E, L) has the same directional relationship 
but different topological and distance relationships from (A, L). It is clear that (B, L) is 
more similar to (A, L) than (E,L) is as the TDD model showed and the Bruns-Egenhofer 
model did not. A main reason for the difference between the two models is that the TDD 
model bases its measurements on both distance and similarity while the 
Bruns/Egenhofer’s model depends solely on the distance measurement and neglects the 
similarity measurement. 

6 Similarity Visualization: A Computational 
Implementation of TDD 

We implemented a visualization of the TDD model as an extension of the parallel 
coordinate plot (PCP) (Inselberg, 1985). The extended PCP is implemented in Geovista 
Studio, a JAVA-based visual programming environment (Takatsuka and Gahegan, 2002). 
Our similarity measurement components are implemented as Java Beans, which can be 
integrated with GeoVISTA studio. 

6.1 The Implementation of the Model as an Extension to PCP 

PCP has parallel axes with each of them representing an attribute. Each spatial object in a 
scene is represented as a line across these axes. A major advantage of PCP over scatter 
plot (Anselin, 1999) is that PCP can visualize many attributes simultaneously. PCP helps 
to visualize relationships among the objects such as spatial clusters and spatial similarity. 
The more similar two objects are, the closer their lines appear in PCP.  

PCP is normally used in visualizing numerical variables and their relationships. However, 
in addressing spatial similarity, besides numerical variables, there are also qualitative 
variables, such as topological relationships, which are hard to represent using PCP. In our 
model we need to implement three types of qualitative measurements: topological, 
directional and distance relationships. Furthermore, PCP considers all the objects as if 
they are alignable (if there are M attribute axes on the plot, all objects have values for 
these attributes so that they can be compared). However, non-alignment situations may 
happen when of spatial similarity evaluation. For instance, two spatial scenes may have 
the same spatial relationships but different kinds of spatial objects. One scene may 
contain two disjoint regions (polygons) while the other contains two intersecting rivers 
(lines). Since regions and rivers have different thematic attributes, these two scenes are 
alignable on spatial relationships but non-alignable on object attributes. The traditional 
PCP does not handle non-alignment situations. 

In our implementation, PCP has 4 axes dealing with relationships. They are topology, 
direction, metric-distance, and attribute-distance. The attribute part is comprised of two 
axes, being one for geometric attributes and one for thematic attributes. There are 
branches representing different thematic layers. In each branch there are many attributes. 
The inclusion of attributes can be controlled through human-computer interaction. 

Our implementation overcomes two deficiencies of the traditional PCP. We created an 
integrated mechanism to visualize both quantitative (attributes on thematic layers) and 
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qualitative (relationships) data. We use branched parallel-coordinates to handle the non-
alignment problem in similarity assessment. Spatial objects are represented as lines 
across the visualization panel. If two lines go to different branches, the segments on the 
different branches are non-alignable. For example, in Figure 8, the two lines are alignable 
on both the scene-part and the object-part, except for one branch representing attributes 
21, 22, and 23 which are present only for the dotted line. 

 

Figure 11 - Detail of the implementation of the model 

In order to visualize the qualitative spatial relationships, the traditional PCP vertical axis 
is replaced in the implementation of our model by a conceptual neighborhood network. 
On the topological relationship axis, six nodes represent different types of topological 
relationships which are disjoin, meet, overlap (or intersect), contain, contain&meet, and 
equal. The lengths of the edges on the axis between the nodes reflect the weight setting 
defined in the topological network. The relationship between the weight setting of each 
edge and the metric length of each edge on the axis can be described as  

distance2metric
distance1metric

weight
weight

=
2
1

 

An exception is the edge from contain to contain&meet. The weight of the edge from 
contain to contain&meet is 1; from overlap/intersect to the other nodes is 2; from equal 
to the other nodes is 3. However, this weight relationship could not be geometrically 
represented due to the rule that, in a triangle, the sum of two edges is more than the third 
edge. 

On the direction network the five relationships are east west, northeast southwest , north 
south, northwest southeast, and same. The weight setting for each edge is 2. The figure 
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made of four lines and of the five points represents the defined directional relationship. 
The metric distance relationship axis expresses geometrically the metric distance network 
with a line segment and four points which represent the four-distance relationships of 
equal, near, medium and far. 

When comparing spatial objects, the similarity they share can be observed through the 
distances among the lines representing them. In Figure 12 we can see that line 2 is more 
similar to line 1 than it is to line 3. Since the weight setting on the topological, directional 
and metric distance relationships, and the length of each edge matches the weight setting, 
the visualization of spatial similarity is consistent with the spatial cognition literature 
(Renz, 2002b). 
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Figure 12 - Spatial relationships in our model’s implementation of PCP 

 

6.2 Similarity Measurement on the Extended PCP 

We now explain how the similarity of attribute distance relationship, geometric attributes 
and thematic attributes are measured on the extended PCP. 

6.2.1 The Attribute Distance Relationship 

Attribute distance is a similarity factor tha t measures the internal attribute distance of a 
spatial scene. It is evaluated when a scene has two spatial objects. The attribute distance 
axis classifies the attribute distance space into M = 8 parts (M can be set to other values 
by the user depending on the application context). Each part is represented as a node with 
the label of a digit ranging from 0 to 7. On the top of the axis, there is a special node 
called non-alignable node. If the two spatial objects belong to different thematic layers, 
the value of attribute distance is set as non-alignable. Having N  attributes, the overall 
attribute distance equals to  
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The attribute distance of two values ( 21 ,valuevalue ) on the thi  attribute is calculated as 
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In order to divide the attribute distance space into M  parts  

jdistanceattribute i = , )
1

minmax
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M
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−
≤ , 1,...2,1,0 −= Mj . 

Considering two scenes, scene1 and scene2, if the overall attribute distance of scene1 
( )1(SceneD ) equals to the overall attribute distance of scene2 ( )2(SceneD ),  

Mene2)(Scene1,Scsimilaritydistanceattribute = ; 

otherwise, 
D(Scene2)|e1)abs|D(ScenMathene2)(Scene1,Scsimilaritydistanceattribute −−= . 

6.2.2 The Geometric Attributes 

On the geometric attribute axis, it is the number of common types of spatial objects that 
is measured as commonality and difference. Given two scenes, let M to be the set of 
spatial object types in scene1 ( },,{ polygonlinetpoinM ⊆  ); let N to be the set of spatial-
object types in scene2 ( },,{ polygonlinetpoinN ⊆ ); NMC ∧=  
( },,{ polygonlinetpoinC ⊆ ) is the set of common spatial object types and NumberOf (C) 
is the number of common spatial object types in comparison of two scenes.  

NMNMP ∧−∨=  ( },,{ polygonlinetpoinP ⊆ ) is the set of different spatial-object 
types and NumberOf (P) is the number of different spatial-object types in the comparison 
of two scenes. Let the weighted distance range to be {0, MAX},  

MAX
NMNum
NMNum

cycommonalitweighted *
)(
)('

∨
∧

==

MAX
NMNum

PNum
ddifferenceweighted *

)(
)('

∨
== , 

''*5.1 dcsimilarityweighted −= , 

)( NMNum ∨  = the number of spatial-object types in the set of NM ∨ . 
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6.2.3 The Thematic Attributes 

The model can handle a number N of thematic layers ( 0≥N ).Each thematic layer has 

the weighted distance range of {0,
N

MAX
}. Note that N is the number of thematic layers 

for all the scenes involved in a certain task instead of the number of thematic layers of 
one scene or of the two scenes in the comparison. For example, if the task is to determine 
which scene is the most similar to the first among six scenes, N is the number of thematic 
layers for all the six scenes. The max weighted distance for each thematic layer is 

4
30

N
ncedistaweightedmax

ncedistaweightedmax i == , Ni ,...,3,2,1= . Instead of the 
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7 Conclusions 
In this paper, we introduced a model to facilitate the assessment of spatial similarity. The 
main objective was to enhance the role of human cognition in the process. The major 
contribution of this work is the improvement of spatial similarity assessment through the 
application of (1) commonality between the stimulus pair, (2) structural alignment, (3) 
the inter/intra-group transformation costs, and (4) the use of the order of priority as 
topology ?  direction ?  distance (TDD) into spatial similarity assessment. An extended 
PCP is  also implemented as the similarity visualization of our TDD model. 

The approach was based on findings of psychological similarity research which stated 
that (1) the commonalities between a stimulus pair increase the similarity more than 
differences decrease it; (2) aligned differences affect the similarity more than non-aligned 
differences do; (3) the order of priority topology ?  direction ?  distance reflects the 
priorities of different types of spatial relationship in spatial similarity assessment; and (4) 
the difference between inter-group transformation cost and intra-group transformation 
cost which is consistent with the theory of categorization. The application of these 
concepts minimized the gap between previous research on spatial similarity assessment 
and the findings of psychological similarity research. 

Similarity asymmetry is also a challenge in computer-based assessment of spatial 
similarity. By nature, it is a context-dependent problem. The asymmetry exists because 
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the context of addressing similarity from A to B may be different from the context of 
addressing similarity from B to A. With different contexts, the related similarity elements 
and the priorities of the elements are also different. Thus, the problem of similarity 
asymmetry can be transferred to how to choose different similarity elements and the 
priorities of these elements. We opted here to implement a weight system that addresses 
context issues with the help of the end-user. Therefore, in the solution we implemented 
context, is addressed through human-computer interaction. 

Our work was implemented as a human-centered component-based model. Each 
component has specific functions, such as similarity computation, similarity visualization 
or human-computer interaction. The implementation was developed in Java and it can be 
integrated with GeoVISTA studio framework (Takatsuka and Gahegan, 2002). 

In this work we addressed scenes with up to two spatial objects. Future work should 
evaluate similarity among scenes with three or more spatial objects. In such scenes, 
spatial distribution and attribute distribution need to be addressed as playing the role of 
relational similarity. In addition, similarity asymmetry is a challenge in computer-based 
assessment of spatial similarity. Our work was based on the hypothesis that spatial 
similarity assessment is improved with the application of commonality, structural 
alignment, the TDD order, and the inter/intra-group transformation costs. Future work 
should perform human-subject tests in order to compare the results of assessing spatial 
similarity with and without the application of (1) commonality, (2) structural alignment, 
(3) the TDD, and (4) the inter/intra-group transformation costs. Computational efficiency 
is another important concern of computer systems. Our work contributed in how to 
improve the assessment of spatial similarity. However, we did not consider the issue of 
computational efficiency. In future research, different types of indexes may be built to 
increase the similarity computational efficiency with the creation of indexes based on 
spatial relationships, attribute relationships, spatial distribution, and attribute distribution. 
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