&,s«m* o
‘\lh‘h“) c'
g

5 saiall dnala — Luudigll 448

Cl114 o puadl) cluall Jara

Computer Engineering and Control Systems
asail) aldi g cilaalald) dudia and

Laboratory Book

COMPUTER ENGINEERING AND CONTROL SYSTEMS DEPARTMENT

C1114 3 yadl Gldall Jaza

Laboratory Book

Table of Contents

1: Laboratory Basic Information............cccccceveeiiiniennnnnn. 1
S PO B T P 1
2: Laboratory InStruments.........ccccoeveeviviii e, 2
Gamally 53 5 sl lanall 53 36V AalE Ll Lo s i e 2
3. Laboratory Experimental LiSt...........c.ccovviiiiviiiiiinnnnnn, 3
Janall Jals (6355 A el Al 1S oL e 3
4. Laboratory Beneficiaries..........c.cccceveviiviiiiiciiee e, 4
Jenall gy 3 Amainall HLadill slasl 5o u i 4
5. Laboratory Student Beneficiariesc.c.ccceeeeennne.. 5
enall Ly A AUl Ciladal) SLsli Lo 5
6: Laboratory Experimental...............ccccoeevivviiiinceceiiee, 6
DN I B O 6
Experiment 1 NOR Gate CirCUit...........cccevvieiiiiiiieeeeeeeeeecee e 7
Experiment 3 NAND Gate CirCUIt.........ccovvveeviuiiiiieeeeeeeeeiieee e 10
Experiment 4 XOR Gate CirCUItuuuuuuuuummmiiiiiiiiiiiiiiiiiiiiiininnnns 13
Experiment 5: FLIP-FLOPSccooiiiiiic e 16
EXPEIMENT B ...t 19
D FHP-FIOP ..ot 19
Experiment 7 JK Flip-FIOp ... 20
EXPErIMENT 8.....uiiiiiiiiiiiiiiiiii e 21
DESIGN OF SEQUENTIAL CIRCUITS......c.coovovevieieeeeeeeesee, 21
EXPEriMENt Q..o 28

ComMMaANd REIEIENCE ... et aees 28

1: Laboratory Basic Information

8 _jaal) Ciluulall - Jaral) ol

Al 5 cilalal) Acia ealad) acdl)
e 2aal /,3,4,) o yudal)

A8 e gl o sdaradl (udiga

PRI al IR Jgpeaian /6 330l :Jaral) Gyl
1492 il s Cdatil)

Ayl dalll | ALKl A il 28 gal)

25120 - Jaral) dalwa

2: Laboratory Instruments

Jazalls 32 g gall Cilanall o)@A‘)ﬂ-i 48 -

Serial Number) Sl acd
MB ECS-G41 T.M 23 CPU Intel Core 2 Due
2.912M
MB Intel P.IV GB 1 CPU Intel P.IV 3 GHz
945 chipset
Basic and sequential 6 Digital Kit
Basic logic 4 Digital Kit

3: Laboratory Experimental List

Janall Jala (5355 N o jlailly daild -G

e (2 IR

RS I dac A4S 5 diidh 55 s i yal _ _ .
RS 3 3has Sisfe le i Investigate the operation of R-S flip flop

T Flip flop) dee 4 5adh 55 i sSa o il
: Investigate the operation of T flip flop

. D flip flop) Jae 448 54aka o il . : .
Ip flop- SRy oo Investigate the operation of D flip flop

J-K flip Jl dae 488 5daka 5 lisSa e o el
. flop Investigate the operation of J-K flip flop

Al i) sl el Design Sequential Circuits and counters

Lo LS Sl ol) 35 Linux Commands

4: Laboratory Beneficiaries

:Jamall L sy S dpninall cileadl) -l

5: Laboratory Student Beneficiaries

:Jamall Ly A Apdall cleadl) (Ll

Clda 200 g sl 020 A A e Cpdiuall Gl dae

Jaxdll

abaill g Cladall dxia aud | e bl dyalell ALuEY)

Jazall

alai g Clulal) Ania and (he AN 48 jal) — A0l 48 8l 1 4Y) 48) O Budiieall 4l all (3l
pSadl) Jazall

et MUal Gl clila dEle cilads die —3pUa ol s | Jaradl Jaka Al ddass)
:\.a..umMuMcM\ejwmm—QMN\b}LJ}MM\
alai 3alal 4y 5aal UlaieY) ciluda sie - sl Al sl
ZGJJMJIGAEJHMSJNM\QUMAY\J&G—M\
alai g clialall dunia andy J ¥ Caall Q3L duall cu il -

2

luadald) da gl Wg_dti:‘é) Llad) clad gall Gdlda das

Jarall (pa Cpaadiald)

kil g e) gall alailly dali dpdle Jilu, mad lead) s all Gabi | el Al dvalad) Jili)l ae

SV 2011) DA ey 5 i) dlen alai g dluall il LAl Jexdll
(2013

) A il &l gall sae

igall o g3 aa andll Oy Aaldl) & Al 4y jliiag ald Sl & s Al dalaal) liilial)
Jah) — A g ymall pac dspe — 6 paall | e Cpgiuall fpe oDl Led
Jazall

6: Laboratory Experimental

Z\TAA;A]\ g._u\;ﬂ\ :’L.uz.l\.u

Experiment 1 NOR Gate Circuit

OBJECTIVE

Understanding how to construct other combinational logic gates using NOR gates.
DISCUSSION

The symbol of a NOR gate is shown in Fig. 2-1. The Boolean expression for the N gate is F= A + B; in de
Morgan's theorem, F= A + B = A x B.

When A=B,F= A + B=A +A= A. When B=O, F= A + B = A + 0 = A. Therefore, the NOR gate can be used to

construct NOT, OR; AND; NAND; and XOR gates. We will not attempt to construct various logic gates in this
experiment by connecting NOR gates in different ways.

Input A

Input B

Fig. 2-1 Symbol of NOR gate

EQUIPMENTS REQUIRED
DLLT-1300 Digital Logic Lab Trainer; DLLT-EM02
EXERCISE

Make sure the Fault Simulator DIP Switch follows the below setting :

ON

]
OFF

U1la of Fig. 2-2 (a) will be used to construct a NOT gate.

Connect inputs A, B to Data Switches SWO, SW1 and output F1 to Logic Indicator L1.

Set SWO to "0", observe states of F1 at SW1="0" and SW1="1".
Does the circuit act as a NOT gate? (As in Fig. 2-2 (b))

—— ‘—.—I-F-—r-u}-'r—l——!n-"-'-‘

I K3 Ra RS 1
AN AN} |
REG i
A I
A1 E
]
I F4 i
4 F3 1
co i A —
| E F2 b E A . . uid F
1 D oG cihrcuit a | y
[——— e — — —t-l-—-—---—--—l—---—-——‘
Fig. 2-2 (a) DLLT-EMO02: Assembly Logic Circuits (1) Fig. 2-2 (b) NOR gate used as NOT gate

. Insert a connection clip between A and B. Connect A to SWO and F1 to L1. What is the
state of F1 when SW0=0 and SW0=17?

Does the circuit act as a NOT gate?

. Use U 1a and U 1c to construct a buffer shown on the left side of Fig. 2-2 (c). Insert
connection clips between A~ B; F1~A1; A1~ B1. Connect input A to SWO and output F3
to L1. What is the state of F3 when SW0=0 and SW0=17?

Does the circuit act as a buffer?

[

Fig. 2-2 (c) NOR gate use as Buffer and OR gate
. Use Ula and Ulc to construct an OR gate shown on the right side of Fig. 2-2 (c). Insert
connection clips between F1 ~Al and A1~B1. Connect inputs A to SWO, B to SW1; and
output F3 to L1. Follow the input sequences shown below and record the output states
in Table 2-1.

Table 2-1

. Insert connection clips according to the figure below. The circuit will act as an AND
gate.

(1) Connect A to SW0; D to SW1; F1 to Al; F2 to 131 - F3 to 1-1.
(2) Follow the input sequences given below. Record the output states in Table 2-2.

r'mlll-lu-ln--.-i l———————----1

Table 2-2

RESULTS

. NOR gate can be used to construct just about any basic logic gate.

. There are two ways to use NOR gate as an inverter. Since TTL gates have higher
current when the input is grounded, if TTL NOR gate is to be used as an inverter, its
two inputs should be connected together.

FAULT SIMULATION

. Ula and Ulc are used as a buffer and the outputs stay in high state. Try to locate all
possible faults.

. The outputs stay at low state when Ula and Ulc are used as a buffer. Try to locate all
possible faults.

. When Ula. Ulb. Ulc are used as an AND gate, the output F is only affected by the
input A What could be the faults?

Experiment 3 NAND Gate Circuit

OBJECTIVE
To understanding how the construct various combinational logic gates with NAND gates.

DISCUSSION

logic gates. We will attempt to construct various basic gates in this experiment by connecting NAND gates in different ways.

’.'21_
B —

Fig. 2-4 Symbol of NAND gate
EQUIPMENTS REQUIRED
DLLT-1300 Digital Logic Lab Trainer; DLLT-EMO02: Assembled Logic Circuits (1) Experiment Module

EXERCISE

1. Insert connection clips according to Fig. 2-5(a), using U2c and U2d to construct the NOT gate shown on
left side of Fig. 2-5(b).

circuit b

S —— — e

A "1" 0
o_[2 F2 U2 poF2
A 0

(b) NOT gate constructed with NAND gate

(1) Connect input A to Data Switch SW1 and output F2 to A2 and Logic Indicator L1; connect 131 to Vee ("1 "). Observe the output states.

When SW1="0", F2=

When SW1="1" F2=

Does the circuit act as a NOT gate?

(2) Connect input Al to Vee ("1 ") and remove the connection clip between A and Al to create the NOT gate shown on the right side of Fig. 2-5 (b). Other
connections remain the same. Observe the output states.

When SW1="0", F2=
When SW1="1", F2=
Does the circuit act as a NOT gate?

10

(3) Remove connection clips and insert them again according to Fig. 2-6 (a) to construct the AND gate shown in Fig. 2-6 (b). Connect A to SW1, Al to SW2
and F4 to L1. Follow the input sequences given below and record the outputs in Table 2-4.

Does the circuit act as an AND gate (F=AxB)?

= A
I I
i o° 3 i
1
[
I
i F1 uz Az 1
: ® A1 O— F2 Fd4 |
| € :
! F3
l B2 :
e |
; i
i o
i circuit hJ
[st e e e st e
Fig. 2-6 (a)
Table 2-4
A O
uz2 uz2 F
B o
Fig. 2-6 (b)
2. Insert connection clips according to Fig. 2-7 (a) to construct the circuit of Fig. 2-7 (b). Connect A to Al

and SW1; F2 to A2; D to 131 and SW2; F3 to 132; F to 1-1. Follow the input sequences in Table 2-5 and record
the outputs.

Does the circuit act as an OR gate (F=A+B)?

-

A

o0 !
I

= T

ad rz Fd :

B1 F2 I
maz -
!

1

1

[

1

|

=1

e I T T T e e S e S iy

_E':ﬁﬂ

o e e e]

circuit b

11

A O— UZc

uUzb F

(b) OR gate constructed with NAND gate

Table 2-5
RESULTS
1. NAND gates can be used to construct any basic logic gate.

2. There are two ways to construct inverters with NAND gates. Since the high state of TTL consumes almost no current, if NAND gates are used to construct
inverters the spare input should be connected to high potential.

FAULT SIMULATION
1. The output F2 remains in low state when U2b is used to construct a NOT gate. What could be the faults?

2. When U2b, U2c, U2d are used to construct an OR gate, the output F remains in high state. What could be the faults?

12

Experiment 4 XOR Gate Circuit
OBJECTIVE
Understand the characteristics of XOR gates.

DISCUSSION

The symbol of a XOR gate is shown in Fig. 2-8. The output F is equal to A (‘B B-= AB+AB .x0r gates can be constructed using NOT, OR, AND,
NOR or NAND gates or by using four NAND gates, as shown in Fig. 2-9 (a) and (b).

sl O

Fig. 2-8 Symbol of XOR gate

EED HEo-

(a) with basic gates (b} with NAND gates only

Fig. 2-9 XOR gate circuits

Since F= AB+A B , when B=0 F= A x 0+Ax 0=Ax1=1 and the circuit act as buffer. When B=1, F= Axt+axl=Ax1= A , the circuit act as
an inverter. In other words, the input state of 2 XOR gate determines whether it will act as a buffer or an inverter. In this experiment, we will use basic logic
gates to construct XOR gates and study the relationship between the inputs and outputs.

EQUIPMENTS REQUIRED

DLLT-1300 Digital Logic Lab Trainer, DLLT-EMO02: Assembled Logic Circuits (1) Expetiment Module

EXERCISE

(a) Constructing XOR gate with NAND gate (Module DLLT-EMO2 circuit b)

1. Insert connection clips according to Fig. 2-10 (a) to construct the circuit of Fig. 2-10 (b). Connect inputs A to SW1, D to SW2; outputs F1 to L1, F2
to L.2; F3 to L3 and F4 to L4.

5 |

1 A |
] i
] 1
] i
| B F1 a1 Uz Az |
! b F3 - :
1 B1 uz B2 i
1 [
| & |
1

| |
i

{ circuit b |
L.........,...n..q.-.-q-.——————--t—hd—-—-—-—ll—t—--—-——b—--ﬁ—-——q———————.——I

-
(2]

uT OUTPUT

UZc

uzd uzb F4

[’“ F1 u>a
D O—

Fig 2.10 ()

F3 U2:7400

Fig 2.10 (b) equivalent circuits

2. Follow the input sequences for A and D in Table 2-6 and record the outputs.
INPUT OUTPUT
)
3. Determine the Boolean expression for F1, F2, F3, F4.

(b) Constructing XOR Gate with Basic Gate (DLLT-EMO2 circuit c)

1. Insert connection clips according to Fig. 2-11 (a) to construct the equivalent circuit of Fig. 2-11(b).

2. Connect input A, B to SW1 SW2; outputs F1, F2, F3, to L1, L2, L3.

Follow the input sequences for A and B in Table 2-7 and record the output.

A 1
= i
| a1 1
i 1
i F7 i
i i
P :
1 B I
P2 i
1
| | -3 |
i
: circuit c |
S J
Fig 2.1 (a)
A O F1
u3b ——— o ——1
¥
=) e
I
P — |
U3b
Udb
B o Fz2 {} usb+uac
U3:7400

U4:7416 -
—

Fig 2.11 (b) equivalent circuits

14

Table 2-7

1. Can this work as an XOR gate? If not how to modify it?
RESULTS
1. XOR gate can be constructed with either basic gates or four NAND gates with the same

However, using four NAND gates is much simpler.

2. By adding a NOT gate to the output of a XOR gate it can be converted into an XNOR.

FAULT SIMULATIONS

1. What could be wrong if 4 NAND gates are used to construct a XOR gate and the output F=D?
2. What could cause the output F3 of a XOR gate made with basic gates to remain in high state?

results.

15

Experiment 5: FLIP-FLOPS

OBJECTIVES:

» Construct and investigate the operation of various types of Flip-Flops.

Equipment and ICs:

* Lab. kit

* IC 7400 Quad NAND gates

* IC 7402 Quad NOR gates

« IC 7476 Dual J K-type flip-flops
* IC 7474 Dual D-type flip-flops

Introduction:

In digital circuits, a flip-flop is a term referring to an electronic circuit that has two
stable states and thereby is capable of storing one bit of binary information and
therefore, can serve as one bit of memory.

The major differences among various types of Flip-Flops are in the number of
inputs they possess and in the manner in which they affect the binary state.

We will examine the:

Basic Flip-Flop.
SR Flip-Flop.
D Flip-Flop.

JK Flip-Flop.

T Flip-Flop.

1.1 Basic and SR Flip-Flops

Basic Flip-Flop:

16

http://en.wikipedia.org/wiki/Digital_circuit
http://en.wikipedia.org/wiki/Electronic_circuit
http://en.wikipedia.org/wiki/Bit
http://en.wikipedia.org/wiki/Computer_storage

Figure 1

The Basic flip-flop operation is as follows (there is no clock):

1.

will Q")

2.

3.

4.

SR Flip-Flop:
Figure 2

Lab Work:

S=0, R=0: No Change. Q will not change state (neither

S=0, R=1: Reset. Q gets reset (goes to 0). Q will be a 1.
S=1, R=0: Set. Q gets set (goes to 1). Q" will be a 0.
S=1, R=1: Not allowed.

D 0
Ty

1. Implement the circuit in Figure 1 on the kit using 1C 7402 which has four NOR gates.
(Note: there is no clock pulse)

a. Connect input S and R to a DIP switches.
d. Connect Q outputs of the flip-flop to two LEDs.

17

2. Set Sto 0 and R to 1. This resets the flip-flop which means that Q isa 0 and Q' is
a 1. This will always be the case when S=0 and R=1 regardless of the previous state of
Q.

3. Go from S=0 and R=1 to S=0 and R=0. Q stays at 0 because SR=00 is the no
change input combination and the previous state of Q was a 0.

4. Set Sto 1 and R to 0. This input combination sets the flip-flop (Q=1, Q'=0)
regardless of the previous state of Q.

5. Go from SR=10 to SR=00. This time Q stays at 1 which confirms that Q does not
change state if S and R are 00.

6. Set StoalandRtoal. This input combination is disallowed since Q and Q' are
both 0 and are not complements of each other. This input combination should always be
avoided.

7. Do steps 2 through 5 a few more times to get the feel of the operation of the SR
flip-flop. Include changing S and R from 01 to 10 and from 10 to 01.

8. Tabulate your observation in the characteristic table:

9. Connect the circuit shown in Figure 2. Notice that this implementation is different
from the previous one in that S feeds into the gate whose output is Q and R feeds into
the gate whose output is Q'. (Note: There is Clock pulse)

10. When Enable=1 enables the S and R inputs. To see what this means, set enable high
and verify that the circuit works exactly like the circuit of Figure 2.

11. When Enable=0 disables the inputs. Show this by setting enable low and changing
the S and R inputs. Notice that the outputs will not change regardless of what changes
occur at S and R.

10. Repeat steps 2 through 7 to verify that this implementation of the SR flip-flop is
equivalent to the Basic flip-flop.

18

Experiment 6
D Flip-Flop

D Flip-Flop:
D D
0
cp
_: o
Figure 3
Lab Work:

1. Implement the circuit in Figure 3 on the kit using two of IC 7400 which has
four NAND gates.

a. Connect input D to a DIP switches.

d. Connect Q outputs of the flip-flop to two LEDs.

2. With the D input remaining low, change the clock from low to high. Notice
that the state of Q has changed from 1 to 0. Q' has also changed.

3. Change the D input to a 1 and change the clock from a 1 to a 0. Notice that
the state of Q did not change to the input present at the D input since the proper clock
transition was not provided. Change the clock back to a 1 and notice that Q changes to a
1.

4. Practice making Q a 1 and a 0 by changing the state of the D input and

toggling the clock.
5. Tabulate your observation in the characteristic table:

D)

19

Experiment 7 JK Flip-Flop

JK Flip-Flop:

D

ﬁf

Ml

f

>

—

Figure 4
The JK flip-flop operation is as follows:
a. J=0, K=0: No Change. Q will not change state (neither will
Q') when a negative edge is supplied to the clock.
b. J=0, K=1: Go to 0. Q will become a 0 (Q' goes to 1) when a
negative edge is supplied to the clock.
C. J=1, K=0: Go to 1. Q will become a 1 (Q' goes to 0) when a
negative edge is supplied to the clock.
d. J=1, K=1: Complement. Q gets the complement of its

previous state (as does Q') when a negative edge is supplied to the clock.
Lab Work:

1. Implement the circuit in Figure 3 on the kit using two of IC 7400 which has
four NAND gates.

a. Connect input J and to a DIP switches.

d. Connect Q outputs of the flip-flop to two LEDs.
2. Construct a truth table similar to the one which was made for the D flip-flop. Include
columns for J, K, Q, and Q'. Have the instructor check your characteristic table.

20

Experiment 8
DESIGN OF SEQUENTIAL CIRCUITS

OBJECTIVES:

* Design and implement sequential circuits

Equipment and ICs:

« 2 - IC 7476 Dual J K-type flip-flops
« 2 - IC 7474 Dual D-type flip-flops
« 2 — IC 7400 Quad NAND gates

Introduction:

A sequential circuit is made up of flip-flops and combinational gates. The design of the
circuit consists of choosing the flip-flops and then finding a combinational gate
structure that, together with the flip-flops, produces a circuit that fulfills the stated
specifications.

The number of flip-flops is determined from the number of states needed in the circuit.
The combinational circuit is derived from the state table by evaluating the flip-flop
input equations and output equations.

The procedure for designing synchronous sequential circuits can be summarized by a
list of recommended steps:

1. Derive a state diagram from given specifications.

2. Obtain a state table from given specifications or state diagram.

3. Reduce the number of states if necessary.

4. Choose the type of flip-flops to be used.

5. Derive the simplified flip-flop input equations and output equations.
6. Draw the logic diagram.

An example for implementing a sequential circuit whose state diagram is given is
shown in the Figure 1 below.

21

Present state Oou Flip-flop inpu

Figure 1: state diagram and the state table of the sequential circuit.

Since there are 4 states, two Flip-flops will be required to implement the circuit Flip-
flop inputs for a D Flip-flop are same as the Next State values and the output equation is
as follows:

DA = A (t+1) = Ax + Bx

DB =B (t+1) = Ax + B'X

Y = AB

22

Is|

— v
J

Figure 2: Implementation using D Flip-flops.

And the Flip-flop inputs for J K Flip-flop are:

JA = BX KA =X
JB =X KB=x"+A'
O a4
>
— A
K Q
X_ﬁ__D._
B
I J Q_f
>
= o—1x T
Y A
| S

Figure 3: Implementation using J K Flip-flops.

23

2.1 Sequential Circuit Design
Design a sequential circuit using JK flip-flops whose state diagram is shown in Figure 2
below. Designate the two flip-flops as A and B, the input as X, and the output as Y.

i
=

1. Obtain the state table from the state diagram.

2. Obtain simplified flip-flop input equations and output equation.

3. Draw the logic diagram of the circuit.

Lab Work:

24

1. Implement the sequential circuit (you designed in the pre-lab) on the
breadboard using IC 7476 which has two JK-type Flip-flops and any external gates
required.

a. Connect input X to a DIP switch.

b. Connect PRESET and CLEAR inputs to logic-1.

c. Connect CLK input to a pulser-button.

d. Connect Q outputs of flip-flops A and B to two LEDs.

2. Apply clock pulses to the circuit by pushing the pulser-button and verify the
state transition and output as shown in Figure 2 above.

3. Now connect the output of flip-flop B to the input X and observe the sequence
of states and output that will occur with the application of clock pulses. Tabulate your
observations in the form of a state table or draw a state diagram.

4. Record your results and observations for the lab report.

2.2 Counter Design

Design a counter that goes through the following sequence of binary states: 0, 1, 2, 3, 6,
7, 10, 11, 12, 13, 14, 15, and back to O to repeat. Note that binary states 4, 5, 8, and 9
are not used. The counter must be self-starting; that is, if the circuit starts from any one
of the four invalid states, the count (clock) pulses must transfer the circuit to one of the
valid states to continue to count correctly. Use J K flip-flops for your design.

25

Pre-lab Work:

1.Draw the state diagram for the counter.

2. Derive the state table from the state diagram.

3. Obtain simplified flip-flop input equations.

4. Draw the logic diagram for the counter circuit.

26

Lab Work:

1. Implement the sequential circuit (you designed in the pre-lab) on the breadboard
using IC 7476 which has two J K-type Flip-flops and any external gates required.

a. Connect PRESET and CLEAR inputs to logic-1.
b. Connect CLK input to a pulser-button.
c. Connect Q outputs of all flip-flops to LEDs.

2. Apply clock pulses to the circuit by pushing the pulser-button and verify the required
count sequence.

3. Verify that the circuit is self-starting by initializing the circuit to each unused state by
means of the PRESET and CLEAR inputs and then applying pulses to see whether the
counter reaches one of the valid states.

4. Record your results and observations for the lab report.

27

Experiment 9

Command Reference

We introduce here some of the commands that will be studied in the course:

Command Descrintion

Cat Toins and displavs files
Cmp Comnpares two files
Cp Conies files
Find Finds files based on criteria
azip Compresses or decompresses files
head Displavs the beginning of a file
less Displavs text files. one screen at a time
1s Displavs information about one or more files
man Displavs documentation for commands
mkdir Creates a directorv
mv Renames or moves a file
rm Removes a file (deletes a link)
rmdir Removes a directorv
tail Displavs the last part (tail) of a file
cd Changes to another working directorv
charp Changes the eroup associated with a file
chmod Changes the access mode (bermissions) of a file
chown Changes the owner of a file and/or the group the file is associated with
date Displavs or sets the svstem time and date
kill Terminates a process bv PID
s Displavs process status
which Shows where in PATH a command is located
who Displavs information about logged-in users

28

mk:@MSITStore:E:/Ahmed/Books/operating%20system/Prentice.Hall.PTR.A.Practical.Guide.to.Linux.Commands.Editors.and.Shell.Programming.Jul.2005.eBook-DDU.chm::/0131478230/art01lev1sec8.html#art01lev2sec6
mk:@MSITStore:E:/Ahmed/Books/operating%20system/Prentice.Hall.PTR.A.Practical.Guide.to.Linux.Commands.Editors.and.Shell.Programming.Jul.2005.eBook-DDU.chm::/0131478230/art01lev1sec8.html#art01lev2sec6
mk:@MSITStore:E:/Ahmed/Books/operating%20system/Prentice.Hall.PTR.A.Practical.Guide.to.Linux.Commands.Editors.and.Shell.Programming.Jul.2005.eBook-DDU.chm::/0131478230/art01lev1sec8.html#art01lev2sec11
mk:@MSITStore:E:/Ahmed/Books/operating%20system/Prentice.Hall.PTR.A.Practical.Guide.to.Linux.Commands.Editors.and.Shell.Programming.Jul.2005.eBook-DDU.chm::/0131478230/art01lev1sec8.html#art01lev2sec11
mk:@MSITStore:E:/Ahmed/Books/operating%20system/Prentice.Hall.PTR.A.Practical.Guide.to.Linux.Commands.Editors.and.Shell.Programming.Jul.2005.eBook-DDU.chm::/0131478230/art01lev1sec8.html#art01lev2sec14
mk:@MSITStore:E:/Ahmed/Books/operating%20system/Prentice.Hall.PTR.A.Practical.Guide.to.Linux.Commands.Editors.and.Shell.Programming.Jul.2005.eBook-DDU.chm::/0131478230/art01lev1sec8.html#art01lev2sec14
mk:@MSITStore:E:/Ahmed/Books/operating%20system/Prentice.Hall.PTR.A.Practical.Guide.to.Linux.Commands.Editors.and.Shell.Programming.Jul.2005.eBook-DDU.chm::/0131478230/art01lev1sec8.html#art01lev2sec26
mk:@MSITStore:E:/Ahmed/Books/operating%20system/Prentice.Hall.PTR.A.Practical.Guide.to.Linux.Commands.Editors.and.Shell.Programming.Jul.2005.eBook-DDU.chm::/0131478230/art01lev1sec8.html#art01lev2sec26
mk:@MSITStore:E:/Ahmed/Books/operating%20system/Prentice.Hall.PTR.A.Practical.Guide.to.Linux.Commands.Editors.and.Shell.Programming.Jul.2005.eBook-DDU.chm::/0131478230/art01lev1sec8.html#art01lev2sec33
mk:@MSITStore:E:/Ahmed/Books/operating%20system/Prentice.Hall.PTR.A.Practical.Guide.to.Linux.Commands.Editors.and.Shell.Programming.Jul.2005.eBook-DDU.chm::/0131478230/art01lev1sec8.html#art01lev2sec33
mk:@MSITStore:E:/Ahmed/Books/operating%20system/Prentice.Hall.PTR.A.Practical.Guide.to.Linux.Commands.Editors.and.Shell.Programming.Jul.2005.eBook-DDU.chm::/0131478230/art01lev1sec8.html#art01lev2sec34
mk:@MSITStore:E:/Ahmed/Books/operating%20system/Prentice.Hall.PTR.A.Practical.Guide.to.Linux.Commands.Editors.and.Shell.Programming.Jul.2005.eBook-DDU.chm::/0131478230/art01lev1sec8.html#art01lev2sec34
mk:@MSITStore:E:/Ahmed/Books/operating%20system/Prentice.Hall.PTR.A.Practical.Guide.to.Linux.Commands.Editors.and.Shell.Programming.Jul.2005.eBook-DDU.chm::/0131478230/art01lev1sec8.html#art01lev2sec37
mk:@MSITStore:E:/Ahmed/Books/operating%20system/Prentice.Hall.PTR.A.Practical.Guide.to.Linux.Commands.Editors.and.Shell.Programming.Jul.2005.eBook-DDU.chm::/0131478230/art01lev1sec8.html#art01lev2sec37
mk:@MSITStore:E:/Ahmed/Books/operating%20system/Prentice.Hall.PTR.A.Practical.Guide.to.Linux.Commands.Editors.and.Shell.Programming.Jul.2005.eBook-DDU.chm::/0131478230/art01lev1sec8.html#art01lev2sec40
mk:@MSITStore:E:/Ahmed/Books/operating%20system/Prentice.Hall.PTR.A.Practical.Guide.to.Linux.Commands.Editors.and.Shell.Programming.Jul.2005.eBook-DDU.chm::/0131478230/art01lev1sec8.html#art01lev2sec40
mk:@MSITStore:E:/Ahmed/Books/operating%20system/Prentice.Hall.PTR.A.Practical.Guide.to.Linux.Commands.Editors.and.Shell.Programming.Jul.2005.eBook-DDU.chm::/0131478230/art01lev1sec8.html#art01lev2sec42
mk:@MSITStore:E:/Ahmed/Books/operating%20system/Prentice.Hall.PTR.A.Practical.Guide.to.Linux.Commands.Editors.and.Shell.Programming.Jul.2005.eBook-DDU.chm::/0131478230/art01lev1sec8.html#art01lev2sec42
mk:@MSITStore:E:/Ahmed/Books/operating%20system/Prentice.Hall.PTR.A.Practical.Guide.to.Linux.Commands.Editors.and.Shell.Programming.Jul.2005.eBook-DDU.chm::/0131478230/art01lev1sec8.html#art01lev2sec43
mk:@MSITStore:E:/Ahmed/Books/operating%20system/Prentice.Hall.PTR.A.Practical.Guide.to.Linux.Commands.Editors.and.Shell.Programming.Jul.2005.eBook-DDU.chm::/0131478230/art01lev1sec8.html#art01lev2sec43
mk:@MSITStore:E:/Ahmed/Books/operating%20system/Prentice.Hall.PTR.A.Practical.Guide.to.Linux.Commands.Editors.and.Shell.Programming.Jul.2005.eBook-DDU.chm::/0131478230/art01lev1sec8.html#art01lev2sec46
mk:@MSITStore:E:/Ahmed/Books/operating%20system/Prentice.Hall.PTR.A.Practical.Guide.to.Linux.Commands.Editors.and.Shell.Programming.Jul.2005.eBook-DDU.chm::/0131478230/art01lev1sec8.html#art01lev2sec46
mk:@MSITStore:E:/Ahmed/Books/operating%20system/Prentice.Hall.PTR.A.Practical.Guide.to.Linux.Commands.Editors.and.Shell.Programming.Jul.2005.eBook-DDU.chm::/0131478230/art01lev1sec8.html#art01lev2sec55
mk:@MSITStore:E:/Ahmed/Books/operating%20system/Prentice.Hall.PTR.A.Practical.Guide.to.Linux.Commands.Editors.and.Shell.Programming.Jul.2005.eBook-DDU.chm::/0131478230/art01lev1sec8.html#art01lev2sec55
mk:@MSITStore:E:/Ahmed/Books/operating%20system/Prentice.Hall.PTR.A.Practical.Guide.to.Linux.Commands.Editors.and.Shell.Programming.Jul.2005.eBook-DDU.chm::/0131478230/art01lev1sec8.html#art01lev2sec56
mk:@MSITStore:E:/Ahmed/Books/operating%20system/Prentice.Hall.PTR.A.Practical.Guide.to.Linux.Commands.Editors.and.Shell.Programming.Jul.2005.eBook-DDU.chm::/0131478230/art01lev1sec8.html#art01lev2sec56
mk:@MSITStore:E:/Ahmed/Books/operating%20system/Prentice.Hall.PTR.A.Practical.Guide.to.Linux.Commands.Editors.and.Shell.Programming.Jul.2005.eBook-DDU.chm::/0131478230/art01lev1sec8.html#art01lev2sec65
mk:@MSITStore:E:/Ahmed/Books/operating%20system/Prentice.Hall.PTR.A.Practical.Guide.to.Linux.Commands.Editors.and.Shell.Programming.Jul.2005.eBook-DDU.chm::/0131478230/art01lev1sec8.html#art01lev2sec65
mk:@MSITStore:E:/Ahmed/Books/operating%20system/Prentice.Hall.PTR.A.Practical.Guide.to.Linux.Commands.Editors.and.Shell.Programming.Jul.2005.eBook-DDU.chm::/0131478230/art01lev1sec8.html#art01lev2sec7
mk:@MSITStore:E:/Ahmed/Books/operating%20system/Prentice.Hall.PTR.A.Practical.Guide.to.Linux.Commands.Editors.and.Shell.Programming.Jul.2005.eBook-DDU.chm::/0131478230/art01lev1sec8.html#art01lev2sec7
mk:@MSITStore:E:/Ahmed/Books/operating%20system/Prentice.Hall.PTR.A.Practical.Guide.to.Linux.Commands.Editors.and.Shell.Programming.Jul.2005.eBook-DDU.chm::/0131478230/art01lev1sec8.html#art01lev2sec8
mk:@MSITStore:E:/Ahmed/Books/operating%20system/Prentice.Hall.PTR.A.Practical.Guide.to.Linux.Commands.Editors.and.Shell.Programming.Jul.2005.eBook-DDU.chm::/0131478230/art01lev1sec8.html#art01lev2sec8
mk:@MSITStore:E:/Ahmed/Books/operating%20system/Prentice.Hall.PTR.A.Practical.Guide.to.Linux.Commands.Editors.and.Shell.Programming.Jul.2005.eBook-DDU.chm::/0131478230/art01lev1sec8.html#art01lev2sec9
mk:@MSITStore:E:/Ahmed/Books/operating%20system/Prentice.Hall.PTR.A.Practical.Guide.to.Linux.Commands.Editors.and.Shell.Programming.Jul.2005.eBook-DDU.chm::/0131478230/art01lev1sec8.html#art01lev2sec9
mk:@MSITStore:E:/Ahmed/Books/operating%20system/Prentice.Hall.PTR.A.Practical.Guide.to.Linux.Commands.Editors.and.Shell.Programming.Jul.2005.eBook-DDU.chm::/0131478230/art01lev1sec8.html#art01lev2sec10
mk:@MSITStore:E:/Ahmed/Books/operating%20system/Prentice.Hall.PTR.A.Practical.Guide.to.Linux.Commands.Editors.and.Shell.Programming.Jul.2005.eBook-DDU.chm::/0131478230/art01lev1sec8.html#art01lev2sec10
mk:@MSITStore:E:/Ahmed/Books/operating%20system/Prentice.Hall.PTR.A.Practical.Guide.to.Linux.Commands.Editors.and.Shell.Programming.Jul.2005.eBook-DDU.chm::/0131478230/art01lev1sec8.html#art01lev2sec18
mk:@MSITStore:E:/Ahmed/Books/operating%20system/Prentice.Hall.PTR.A.Practical.Guide.to.Linux.Commands.Editors.and.Shell.Programming.Jul.2005.eBook-DDU.chm::/0131478230/art01lev1sec8.html#art01lev2sec18
mk:@MSITStore:E:/Ahmed/Books/operating%20system/Prentice.Hall.PTR.A.Practical.Guide.to.Linux.Commands.Editors.and.Shell.Programming.Jul.2005.eBook-DDU.chm::/0131478230/art01lev1sec8.html#art01lev2sec35
mk:@MSITStore:E:/Ahmed/Books/operating%20system/Prentice.Hall.PTR.A.Practical.Guide.to.Linux.Commands.Editors.and.Shell.Programming.Jul.2005.eBook-DDU.chm::/0131478230/art01lev1sec8.html#art01lev2sec35
mk:@MSITStore:E:/Ahmed/Books/operating%20system/Prentice.Hall.PTR.A.Practical.Guide.to.Linux.Commands.Editors.and.Shell.Programming.Jul.2005.eBook-DDU.chm::/0131478230/art01lev1sec8.html#art01lev2sec52
mk:@MSITStore:E:/Ahmed/Books/operating%20system/Prentice.Hall.PTR.A.Practical.Guide.to.Linux.Commands.Editors.and.Shell.Programming.Jul.2005.eBook-DDU.chm::/0131478230/art01lev1sec8.html#art01lev2sec52
mk:@MSITStore:E:/Ahmed/Books/operating%20system/Prentice.Hall.PTR.A.Practical.Guide.to.Linux.Commands.Editors.and.Shell.Programming.Jul.2005.eBook-DDU.chm::/0131478230/art01lev1sec8.html#art01lev2sec79
mk:@MSITStore:E:/Ahmed/Books/operating%20system/Prentice.Hall.PTR.A.Practical.Guide.to.Linux.Commands.Editors.and.Shell.Programming.Jul.2005.eBook-DDU.chm::/0131478230/art01lev1sec8.html#art01lev2sec79
mk:@MSITStore:E:/Ahmed/Books/operating%20system/Prentice.Hall.PTR.A.Practical.Guide.to.Linux.Commands.Editors.and.Shell.Programming.Jul.2005.eBook-DDU.chm::/0131478230/art01lev1sec8.html#art01lev2sec80
mk:@MSITStore:E:/Ahmed/Books/operating%20system/Prentice.Hall.PTR.A.Practical.Guide.to.Linux.Commands.Editors.and.Shell.Programming.Jul.2005.eBook-DDU.chm::/0131478230/art01lev1sec8.html#art01lev2sec80

Digital Logic Design Laboratory Experiment 1 MultiSIM

This experiment is designed to give the students some experience with the laboratory
equipment and software tools. It will not be graded and a lab report is not necessary.

Objective: To get familiarized with MultiSIM.

Required Equipment: The MultiSIM software.

Laboratory Procedure:

Locate the MultiSIM software on the laboratory computers.

Enter a circuit into MultiSIM which implements the function D=A-B+C using a 2-
input AND gate, a 2-input OR gate, and an LED. This will appear as an AND gate with two switches
labeled A and B as inputs, an OR gate with one switch labeled C as one input and another from the
output of the AND gate, and an LED labeled D as output. Test your circuit by checking the output D
for every combination of A, B and C. Doing so should produce the truth table of the circuit.

Repeat step 2 with the circuit for Z=W-(X+Y).

Enter a new circuit into MultiSIM which implements the function E=A-B+C-D
using standard 74LS series components rather than logic gates. Generate the truth table and timing
diagram of output versus inputs.

Repeat step 4 with the circuit for Q=(A-B)+(A’-C-D)+(B’-D’).

Repeat step 4 with the circuit for P=(A+B)-(A’+C+D)-(B’+D’).

29

Experiment 2

Logic Design Using NOR and NOT Gates

Objective: To review Boolean and combinational logic. To implement and test combinational
logic circuits using MultiSIM. Also, to build and test the circuit using 74LS series chips.
Required Equipment: The MultiSIM software, 74LS02, 74LS27 and 74L.S04 logic gates, one
switch/LED box, 5V power supply, breadboard and wires.
. Preparatory Exercises: Use the TTL data sheets available on the class web-site to
answer the following questions.
What is the typical propagation delay in nanoseconds for the 74LS02, 74LS27 and
74LS04 logic gates?
What is the maximum propagation delay in nanoseconds for the 74LS02, 74L.S27
and 74LS04 logic gates?
Use minimal multilevel logic design and 2-input, 3-input NOR gates and inverter
gates only to design the following:

F(A, B, C.D)=IM((2, 4, 5,6, 8,10, 12, 13) - IID(0, 11)

1) Laboratory Procedure: a) Simulate the designs of Preparatory Exercises 3 with MultiSIM using the
appropriate 74LS series chips. b) Develop truth tables and timing diagram for output versus inputs.
¢) Indicate the worst-case delay situation and worst-case delay time calculation. d) Connect the circuit
that you designed and simulated on the breadboard using
the 74LS series chips. Use the switch/LED box to confirm proper operation of the circuit. Show this to
your lab instructor.
2) Report contents:

1 A title page (including course name, experiment number and name, instructor’s name, group
number, student names, and date)

2 Answers of the above preparatory exercises.

3 A description of the design process in sufficient detail for a reader without the assignment sheet
to be able to follow the design from inception to completion, i.e., K-maps and minimized equations.

4 Circuit diagrams, truth tables, timing diagrams, and delay calculations.

5 Comments on the experiment including any difficulties encountered.

» Report Preparation: All material included should be presented in neat and orderly fashion. Use of a
word processor and drawing package is required.

30

Experiment 3

Logic Design Using NAND and NOT Gates

Objective: To review Boolean and combinational logic. To implement and test combinational logic
circuits using MultiSIM. Also, to build and test the circuit using 74LS series chips.

Required Equipment: The MultiSIM software, 74LS00, 74LS10 and 74LS04 logic gates, one
switch/LED box, 5V power supply, breadboard and wires.
. Preparatory Exercises: Use the TTL data sheets available on the class web-site to answer the
following questions.

What is the typical propagation delay in nanoseconds for the 74LS00, 74LS10 and
74LS04 logic gates?

What is the maximum propagation delay in nanoseconds for the 74LS00, 74LS10
and 74L.S04 logic gates?

Use minimal multilevel logic design and 2-input and 3-input NAND gates and
inverter gates only to design the following:

F(a, b, ¢, d) = Em(0, 1, 3, 4,6, 7, 8,10,11,15) + =d(5, 9)

3) Laboratory Procedure: a) Simulate the designs of Preparatory Exercises 3 with MultiSIM using the
appropriate 74LS series chips. b) Develop truth tables and timing diagram for output versus inputs.
¢) Indicate the worst-case delay situation and worst-case delay time calculation. d) Connect the circuit
that you designed and simulated on the breadboard using
the 74LS series chips. Use the switch/LED box to confirm proper operation of the circuit. Show this to
your lab instructor.

4) Report contents:

1 A title page (including course name, experiment number and name, instructor’s name, group
number, student names, and date)

2 Answers of the above preparatory exercises.

3 A description of the design process in sufficient detail for a reader without the assignment sheet
to be able to follow the design from inception to completion, i.e., K-maps and minimized equations.

4 Circuit diagrams, truth tables, timing diagrams, and delay calculations.

5 Comments on the experiment including any difficulties encountered.

» Report Preparation: All material included should be presented in neat and orderly fashion. Use of a
word processor and drawing package is required.

31

Experiment 4

Combinational Logic Design

Objective: To design a minimal cost multiple-output combinational logic network using
commercially available inverters and NAND gates.

Required Equipment: The MultiSIM software, one switch/LED box, 5V power supply,
prototyping board, 74LS00, 74LS04, and 74LS10 logic gates, a 74LS47 BCD to 7-segment decoder,
7-segment LED display, a logic probe and a digital pulser.

. Preparatory Exercises

Review multiple-output design techniques. Use the TTL data sheets available on the class web-
site to familiarize yourself with the 74LS series gates.

The 74LS47 BCD to 7-segment decoder will drive a 7-segment LED display to output the
digits 0-9 in response to BCD encoded 4-bit input.

Using the following table of input/output relationships, design the combinational logic
necessary to turn on the required segments of the seven-segment display for the indicated input
vectors. Your logic will convert the four bit codes below into 4-bit BCD. Use only inverters, 2-input
NAND, and 3-input NAND gates in your design. Assume that any input vectors, which are not listed,
will never occur and may be treated as don’t cares.

T TT T
DHIN

This is a 4-input, 4-output system and your design should make use of multiple-output techniques to
reduce the necessary logic. Design for minimum chip count. You should not need more than five of
the specified chips for this design including the 74L.S47 decoder.

a
a
Xo — L b f b
0 Code to BCD 7447
X, —| Conversion Y, BCD to c g
% 7-Segment d
x Decoder e e | I c
X ——] ¥s ; d

7-segment display

A data sheet is provided to describe the functionality of the 7-segment display.

32

The switch/LED box used for input and output is connected via a ribbon cable and DIP connector as
shown in the following diagram. To use, apply 5V to the red terminal and Ground the black terminal,
then connect the switches and LEDs as needed.

=
el
=)
@

Switches

c®33 Ls Ok, L, O
O O
c®84 L O I
O O
c®55 Ls O O
O O
C@SG Ls O I
[k, L, O

C@ Ss Ls

©OOOOOOE

Laboratory Procedure

1 Simulate your design with MultiSIM using 74LS00, 74LS04, 74L.S10, and 74L.S47 chips. Hand
in printouts of your circuit design and a timing diagram showing all possible input combinations.

2 Connect the circuit you designed and simulated using MultiSIM on the prototyping board using
the appropriate 74LS series chips. Use the switch/LED box to confirm proper operation of the circuit.
Show this to your lab instructor.

3 Try the-don’t care inputs. Do they operate as you expected from your circuit diagram?

4 Calculate the chip cost of your design.

5. Comments on the experiment including any difficulties encountered.

5) Report contents:

1 A title page (including course name, experiment number and name, instructor’s name, group
number, student names, and date)

2 Answers of the above preparatory exercises.

3 A description of the design process in sufficient detail for a reader without the assignment sheet
to be able to follow the design from inception to completion, i.e., K-maps and minimized equations.

4 Circuit diagrams, truth tables, timing diagrams, and delay calculations.

Report Preparation: All material included should be presented in neat and orderly fashion. Use of a
word processor and drawing package is required.

33

Experiment 5

D Flip-Flop

Objectives: To build and utilize a D flip-flop circuit.

Required Equipment: The MultiSIM software, 74LS series chips, one switch/LED box, 5V
power supply, breadboard and wires.

. Preparatory Exercises: Review the operation and uses for D flip-flops in your digital
logic design texts. Also review the specifications for the 74LS74 IC in the TTL data sheets.

Give a brief description of the use of D flip-flops in logic design.

Develop a 74LS74 D flip-flop using 2-input and 3-input NAND gates. Simulate it
using MultiSIM. Submit a clearly labeled circuit diagram.

For the circuit developed in Exercise 2, calculate the worst-case propagation delay
from positive edge of clock to outputs, and from reset and preset inputs to outputs. In addition,
calculate the worst-case data setup time for input D relative to positive edge of clock.

In the design above, beginning in each case from reset: What happen if D=1and a
clock pulse occurs?What happen if D=0 and a clock pulse occurs?

Connect the designed circuit using TTL NAND IC’s and be prepared to operate the
circuit using the switch/LED boxes during the lab.

. Laboratory Procedure:

Simulate the circuit developed above with MultiSIM using NAND IC’s.

Using the circuit designed and assembled in the Preparatory Exercises, correct any
design errors, and demonstrate the operation of the circuit.

The switch/LED boxes will be available during the lab for debugging and
demonstration purposes.

The circuits should perform all the functions provided by the 74L.S74 gates
including the set and reset.

Treat all incoming signals including the clock as inputs controlled by the switch box
and both Q and Q’ as outputs to the LEDs.

Demonstrate proper operation of the circuit to the lab instructor.

. Report Contents:

A title page (including course name, experiment number and name, instructor’s
name, group number, student names, and date)

Answer of the above preparatory exercises.

A description of the process in sufficient detail for a reader without the assignment
sheet to be able to follow the design from inception to completion.

A circuit diagram for the circuit and any requested tables, diagrams, and
calculations.

Comments on the experiment including any difficulties encountered.

Report Preparation: All material included should be presented in neat and orderly fashion. Use of a
word processor and drawing package is required.

34

Experiment 6
J-K Flip-Flop
Objectives: To build and utilize a J-K flip-flop circuit.
Required Equipment: The MultiSIM software, 74LS series chips, one switch/LED box, 5V
power supply, breadboard and wires.
. Preparatory Exercises: Review the operation and uses for J-K flip-flops in your digital
logic design texts. Also review the specifications for the 74LS76A IC in the TTL data sheets.

Give a brief description of the uses of J-K flip-flops in logic design.

Develop a 74LS76A J-K flip-flop using 2-input and 3-input NAND gates. Simulate
it using MultiSIM. Submit a clearly labeled circuit diagram.

For the circuit developed in Exercise 2, calculate the worst-case propagation delay
from negative edge of clock to outputs, and from reset and preset inputs to outputs. In addition,
calculate the worst-case data setup time for inputs J and K relative to negative edge of clock.

In the design above, beginning in each case from reset: What happen if J=0, K=0 and
a clock pulse occurs?What happen if J=0, K=1 and a clock pulse occurs?What happen if J=1, K=0 and
a clock pulse occurs?What happen if J=1, K=1 and a clock pulse occurs?

Connect the designed circuit using TTL NAND IC’s and be prepared to operate the
circuit using the switch/LED boxes during the lab.

. Laboratory Procedure:
Simulate the circuit developed above with MultiSIM using NAND IC’s.
Using the circuit designed and assembled in the Preparatory Exercises, correct any
design errors, and demonstrate the operation of the circuit.
The switch/LED boxes will be available during the lab for debugging and
demonstration purposes.
The circuits should perform all the functions provided by the 74LS76A gates
including the set and reset.
Treat all incoming signals including the clock as inputs controlled by the switch box
and both Q and Q’ as outputs to the LEDs.
Demonstrate proper operation of the circuit to the lab instructor.
. Report Contents:
A title page (including course name, experiment number and name, instructor’s
name, group number, student names, and date)
Answer of the above preparatory exercises.
A description of the process in sufficient detail for a reader without the assignment
sheet to be able to follow the design from inception to completion.
4. A circuit diagram for the circuit and any requested tables, diagrams, and
calculations.
Comments on the experiment including any difficulties encountered.

Report Preparation: All material included should be presented in neat and orderly fashion. Use of a
word processor and drawing package is required.

35

Experiment 7: Shift Register Counters
Objective: To synthesize two shift register counters; a Johnson Counter and a Ring Counter
from appropriate flip-flop circuits.
Required Equipment: The MultiSIM software. 74LS series chips, LED/Switch box, wire and
breadboard.
Read sections in the TTL data sheets pertaining to the 74L.S74 dual D flip-flop
. For a Johnson Counter:
1. Design a simple 4-bit Johnson Counter by using D flip-flops. The counter should count
in the following order:
0000, 1000, 1100, 1110, 1111, 0111, 0011, 0001, 0000, 1000......
What is the least number of flip-flops needed to design a 4-bit Johnson Counter?
How many 74L.S74 chips do you need?
Include in the design a means for resetting the counter to 0000.
Provide circuit diagrams, relevant truth tables, state diagrams and state tables.
. For a Ring Counter:
1. Design a simple 4-bit Ring Counter by using D flip-flops. The counter should count in
the following order:
1000, 0100, 0010, 0001, 1000, 0100, 0010, 0001, 1000, 0100.....
What is the least number of flip-flops needed to design a 4-bit Ring Counter? How
many 74LS74 chips do you need?
Include in the design a means for resetting the counter to 1000.
Provide circuit diagrams, relevant truth tables, state diagrams and state tables.

. Laboratory Procedure

Simulate the designed circuits above with MultiSIM using appropriate chips.

Connect both the Johnson Counter and the Ring Counter circuits designed in the
preparatory exercise using the appropriate TTL IC chips. Arrange the breadboard so that it may be
connected to a switch/LED box. You would have two input switches -RESET and CLOCK, and four
output states shown by LED -Qo, Q1, Q2, and Qs.

Demonstrate the correct operation of your circuits to the lab instructor.

. Report Contents:

A Title Page (including course name, experiment number and name, instructor’s
name, student’s name, group number, and date)

Answers of the above preparatory exercises.

A description of the design process in sufficient detail for a reader without the
assignment sheet to be able to follow the design from inception to completion (state diagram, state
transition table).

A correct list of the input functions to the flip-flops.

A circuit diagram for each circuit, timing diagrams, and any requested calculations.

Sample calculations of the worst-case delay in the excitation function circuits and a
discussion of the impact of these delays on the maximum clock frequency of the counter.

Comments on the experiment including any difficulties encountered.

. Report Preparation: All material included should be presented in neat and orderly fashion. Use
of a word processor and drawing package is required.

36

Digital Logic Design Laboratory

Experiment 8

Sequential Network Design Using J-K Flip-Flops

Objective: To design sequential networks using J-K flip-flops.
Required Equipment: The MultiSIM software. 74LS series chips, LED/Switch box, wire and
breadboard.

* Preparatory Exercises
Read sections in the TTL data sheets pertaining to the 74LS76A Dual J-K flip-flop.

1 For the 74LS76A, what is the maximum clock rate, minimum pulse width for the clock’s high
and low levels, worst case propagation delay of the outputs from the high-to-low clock transition, and
minimum input setup time?

2 Design a nine-step counter to count in the following sequence. Use J-K flip-flops, NAND
gates, and Inverters only. 0011, 0101, 1001, 1000, 1011, 1010, 0110, 0100, 0111, 0011, ... Include in
the design a means for resetting the counter to 0011. Provide a circuit diagrams, relevant truth tables,
state diagrams and state table. In addition, provide the excitation functions for the J-K flip-flops.

» Laboratory Procedure
1 Simulate the designed network above with MultiSIM using appropriate chips.
2 Connect the network designed in Preparatory Exercise 4, using the appropriate TTL integrated
circuit chips. Arrange the breadboard so that it may be connected to a switch/LED box. The circuit
input and output lines should match the following arrangement.

Switches LEDS
Clock e . Q of J-K 3 (MSB)
Reset e . QoflJ-K2
. QofJ-K 1
. Q of J-K 0 (LSB)
3. Demonstrate the correct operation of your circuit to the lab instructor.

* Report Contents:

1 A Title Page (including course name, experiment number and name, instructor’s name,
student’s name, group number, and date)

2 Answers of the above preparatory exercises.

3 A description of the design process in sufficient detail for a reader without the assignment sheet

37

to be able to follow the design from inception to completion (state diagram, state transition table, K-
maps, and minimized equations).

4 A correct list of the input functions to the flip-flops.

5 A circuit diagram for the circuit, timing diagrams, and any requested calculations.

6 Sample calculations of the worst-case delay in the excitation function circuits and a discussion
of the impact of these delays on the maximum clock frequency of the counter.

7 Comments on the experiment including any difficulties encountered.

Report Preparation: All material included should be presented in neat and orderly fashion. Use of a
word processor and drawing package is required.

38

Digital Logic Design Laboratory
Experiment 9

Sequential Network Design Using D Flip-FlopsSimple Vending Machine

Objective: To design sequential networks using D flip-flops.
Required Equipment: The MultiSIM software. 74LS series chips, LED/Switch box, wire and
breadboard.

Preparatory Exercises

1 For the 74LS74, what is the maximum clock rate, minimum pulse width for the clock’s high
and low levels, worst-case propagation delay of the outputs from the low-to-high clock transition, and
minimum input setup time?

2. Design a clocked sequential network to accept two inputs and drive four outputs.

a. The two inputs are for a “nickel” and a “dime”. Each input is a logic 1 when the
respective coin is inserted.

b. The four outputs are four indicator lamps which indicate to the customer what to do:

“Insert 10 cents”, “Insert 5 cents”, “Dispensing item”, and “Giving change”. Note that the outputs will
be a function of the state of the system.

c. The “giving change” light is for the case where the customer inserts a nickel and then a
dime.

d. Assume that the input signal for the coin is only high for one clock cycle per coin and
that only one coin is inserted at a time.

e. The “give change” and “dispense item” output lights are only high for one clock cycle.

f. Once an item is dispensed, start over. (Return to the “insert 10 cents” state.)

Example:

N 0
D : 0
Insert 10 cents: 1
Insert 5 cents : 0
Giving change 0
Dispensing item: 0

OO KHOK
ook O oo
OOk O OO
Ok ORKO
o OO OO
HOOOOOo
OO0 Ok OO
(= e B o i B
ook KHO
HOOOOoOOo
(= I o o i s i
OO OoOKH OO
oo ok OoOkF
ook O OO
OOk O OO
OO OK
P OOoOOoOOCOOo
(= e B o i B
[I o o iy s i

1 Your circuit should include an active low signal for manually resetting the flip-flops to a “start”
state (“Insert 10 cents”). The minimum solution for this implementation requires four states.
2 The design may include NAND gates, Inverters, NOR gates, and exactly two D flip-flops.
3 Note that you will need to design both a state machine, in which the next state is a function of
the current state and the inputs, and an output network, in which the four outputs are a function of the
current state.

6. For the preparatory exercises, the circuit is to be simulated using MultiSIM and the
following must be turned in:

39

a. A circuit diagram clearly indicating chip connections.

b. A timing diagram that shows the correct behavior given three scenarios:
1. Insert nickel and then dime

i1. Insert dime

iii. Insert two nickels

c. Calculation of three parameters

1. The fastest possible clock frequency
ii. The minimum setup time for the inputs “Nickel” and “Dime”
iii. The maximum delay from the clock to output indicators valid

Laboratory Procedure

1 Simulate the designed network above with MultiSIM using appropriate chips.

2 Connect the network designed above using the appropriate TTL integrated circuit chips.
Arrange the breadboard so that it may be connected to a switch/LED box. The circuit input and output
lines should match the following arrangement.

Switches LEDSReset ««Q of D1 (MSB)Clock «Q of D2 (LSB)Dime «:Insert 10 centsNickel -<Insert 5
cents
«-Dispense item +-Give change

Demonstrate the correct operation of your circuit to the lab instructor.

Report Contents:

1 A Title Page (including course name, experiment number and name, instructor’s name,
student’s name, group number, and date)

2 Answers of the above preparatory exercises.

3 A description of the design process in sufficient detail for a reader without the assignment sheet
to be able to follow the design from inception to completion (state diagram, state transition table, K-
maps, and minimized equations).

4 A correct list of the input functions to the flip-flops.

5 A circuit diagram for the circuit, timing diagrams, and any requested calculations.

6 Sample calculations of the worst-case delay in the excitation function circuits and a discussion
of the impact of these delays on the maximum clock frequency of the counter.

7 Comments on the experiment including any difficulties encountered.

Report Preparation: All material included should be presented in neat and orderly fashion. Use of a
word processor and drawing package is required.

40

Digital Logic Design Laboratory
Experiment 10

Six-Sided Electronic Dice Roller

Objective: To use both sequential and combinational logic circuits to build a “real world”
application -an Electronic Dice Roller.

Required Equipment: The MultiSIM software, 74LS series chips, 7-segment display, wire and
breadboard, and LED/Switch box.

*Preparatory Exercises Review TTL data sheets of 74LS76A, 74L.S47, 74LS00 and 74LS04. Also, review
the pin connection for 7-segment display.
1 First, design a counter using 74LS76A that counts repeatedly from 1 to 6. Each number must
appear with the same frequency because a fair die is desired. You can use a down counter or up
counter, as long as each number comes up as often as the others.
2 When RESET, the output is 1 for an up counter or 6 for a down counter.

3. You need a clock signal that cycles through the numbers quickly so that it is impossible
for a human to control what number comes up. Hence, the number is, for all practical purpose,
RANDOM. In order to make the clock signal cycles rapidly, you need an oscillator. You can build an
inexpensive oscillator with the following circuit:

What does the oscillator do when N is an odd number?

What happens if N is an even number?

If you want a high speed oscillator, do you increase the number of N or do you decrease it?

3 The output is fed to the combination of a 74LS47 IC and a 7-segment display.

Laboratory Procedure:
Simulate you design with MultiSIM using appropriate chips. Are switches working
better than the word generator for feeding in the inputs during simulation? Explain.
2. Connect the circuit you designed and simulated using MultiSIM on the prototyping
board using appropriate 74LS series chips. Use switch/LED box
to confirm proper operation of the circuit. Show this to your lab instructor. Do they operate as
you expected from your circuit diagram?
Do you or don’t you see a dim “8” when the “Enable” switch of the oscillator is
thrown ON? Explain.
Comment on the experiment including any difficulties encountered.
Calculate the total cost of your design.
. Report Contents:
A Title Page (including course name, experiment number and name, instructor’s
name, student’s name, group number, and date)
Answers of the above preparatory exercises.
A description of the design process in sufficient detail for a reader without the
assignment sheet to be able to follow the design from inception to completion (state diagram, state
transition table, K-maps, and minimized equations).

41

A correct list of the input functions to the flip-flops.
A circuit diagram for the circuit, timing diagrams, and any requested calculations.
Sample calculations of the worst-case delay in the excitation function circuits and a
discussion of the impact of these delays on the maximum clock frequency of the counter.

Comments on the experiment including any difficulties encountered.

* Report Preparation: All material included should be presented in neat and orderly fashion. Use of a
word processor and drawing package is required.

Enable

2 ‘o3
e

U1A
1

74LS00D

U2A : U2B
N inverters
1 o) e e e 3 DO 4
741.504D 74.S04D

Clock

42

