

Course Specifications: Construction project management

University: Mansoura University
Faculty: Faculty of Engineering
Program: Civil Engineering Program

1. Basic Information

Program Title	Civil Engineering Program
Department offering the Program	Structural Engineering Department
Department Responsible for the Course	Structural Engineering Department
Course Code	STE315
Year/ Level	Third year - First Semester
Specialization	Major
Authorization data of course specification	

Teaching Hours	Lectures	Tutorial	Practical
reaching nours	2	2	-

2. Course aims:

No.	Aim	
5	Lead and Communicate the project stakeholders effectively with full	
	planning and scheduling for construction projects; and analyze its cash flow with resource and risk management.	

3. Learning Outcomes (LOs):

B3.1	Communicate effectively with Project Stakeholders and display professional and ethical	
	responsibilities during Procurement stage.	
B3.2	Define PERT method and Networks for Project Scheduling.	
B4.1	Deal with Tender types and Tender preparation for construction projects.	
B4.2	Treat with Cash Flow analysis thinking and Project controlling.	

No.	Topics	week
1	Planning and Scheduling of Construction Projects	1
2	Types of Networks (AON and AOA Networks) and their Applications	2
3	PERT Method	3
4	Strategy of engineering contracts	4
5	Methods of project management, Contract types and components and Contract documents	5-6
6	Tender types and Tender preparation for construction projects	7
7	Control of uncertain factors in the construction projects	
8	Pricing policy	10
9	Preparing bill of quantities	11
10	Cash flow for construction projects	12-13
11	Time and cost control	14

5. Teaching and Learning Methods:

No.	Teaching Method
1	Interactive lectures (hybrid learning)
2	Discussion Sessions
3	Flipped classroom

6. Teaching and Learning Methods for Disable Students:

	No.	Teaching Method
	1	Additional Tutorials
Ī	2	Online lectures and assignments

7. Student Assessment:

7.1 Student Assessment Methods:

No.	Assessment Method	LOs
1	Mid Term Examination	B3.1, B3.2
2	Semester work (Quizzes, presentation, Portfolio)	B3.2, B4.1
3	Final Term Examination	B3.2, B4.1, B4.2

7.2 Assessment Schedule:

No.	Assessment Method	Weeks
1	Mid Term Examination	8
2	Semester work (Quizzes, presentation, Portfolio)	weekly
3	Final Term Examination	15

7.3 Weighting of Assessments:

No.	Assessment Method	Weights
1	Mid Term Examination	18%
2	Semester work (Quizzes, presentation, Portfolio)	18%
3	Final Term Examination	64 %
Total		100 %

8. List of References

No.	Reference List
1	Hegazy, T., "Computer-Based Construction Project Management", 2002.

Course Specifications: Construction project management

9. Facilities Required for Teaching and Learning:

No.	Facility
1	Lecture Classroom
2	White Board
3	Data Show System
4	Visualizer
5	Presenter
6	Sound System

10. Matrix of Knowledge and Skills of the Course:

No ·	Торіс	aim	LO's
1	Planning and Scheduling of Construction Projects	5	B4.1
2	Types of Networks (AON and AOA Networks) and their Applications	5	B3.2
3	PERT Method	5	B3.2
4	Strategy of engineering contracts	5	B4.1
5	Methods of project management, Contract types and components and Contract documents	5	B4.1
6	Tender types and Tender preparation for construction projects	5	B4.1
7	Control of uncertain factors in the construction projects	5	B2.1, B2.2
8	Pricing policy	5	B3.1, B4.1
9	Preparing bill of quantities	5	B3.1, B4.1
10	Cash flow for construction projects	5	B4.2
11	Time and cost control	5	B4.2

Course Coordinator: Prof. Dr/ Ibrahim Ahmed Motawa – Dr/ Islam Elmasaudi

Head of Department: Prof. Dr/ Ahmed Mahmoud Youssif Mohamed

Date of Approval:

Course Specifications: Construction project management

Course: Construction proje	ct management
Program LOs	Course LOs
B3. Lead and Communicate effectively with multidisciplinary teams and display professional and ethical responsibilities; and contextual understanding to Manage and supervise construction project.	B3.1- Communicate effectively with Project Stakeholders and display professional and ethical responsibilities during Procurement stage.
construction project.	B3.2- Define PERT method and Networks for Project Scheduling.
B4. Deal with biddings, contracts and financial issues	B4.1- Deal with Tender types and
including project insurance and guarantees	Tender preparation for construction projects
	B4.2- Treat with Cash Flow analysis thinking and Project controlling.

Course Specifications: $\underline{\text{Design of water structures 1}}$

University: Mansoura University
Faculty: Faculty of Engineering

Program: Civil Engineering Program

1. Basic Information

Program Title	Civil Engineering Program
Department offering the Program	Irrigation and Hydraulics Dept.
Department Responsible for the Course	Irrigation and Hydraulics Dept.
Course Code	IRH 311
Year/ Level	Third Year-Second Semester
Specialization	Major
Authorization data of course specification	

Teaching Hours	Lectures	Tutorial	Practical
Teaching Hours	2	2	-

2. Course aims:

No.	Aim
1	Master a wide range of hydraulics, hydrology and structural engineering knowledge, techniques
1	and skills to use them in water structures projects.

3. Learning Outcomes (LOs):

No.	LOs
B1.1	Apply a full range of civil engineering concepts and techniques of hydrology and hydraulics for
	solving water structures problems.
B1.2	Select appropriate and sustainable technologies for construction of irrigation and hydraulics
	structures.
B2.1	Achieve an optimum design for retaining walls, escapes and water crossing structures.

No.	Topics	week
1	Introduction to hydraulic structures - criteria and methods of hydraulic design and analysis	W1
2	Types of retaining wall (gravity made of bricks, stones and plain concrete) - cantilever and	
	counterfort with reinforced concrete - Structural design of retaining walls.	W2, W3
3	Hydraulic design of water structures	W4
4	Structural design of crossing structures, culverts, siphons and aqueduct	W5, W7
5	Hydraulic design of bridges and heading up calculations	W9, W10
6	Hydraulia design of tail assence anilly averaged its functions	
	Hydraulic design of tail escapes – spillways and its functions	W12
7	Introduction to hydraulic tunnels.	W13
8	Applications: planning and design as well as layout and details drawing for simple	W14
	hydraulic structures project.	VV 14

Course Specifications: Design of water structures 1

5. Teaching and Learning Methods:

No.	Teaching Method
1	Interactive lectures (hybrid learning)
2	Discussion Sessions
3	Flipped classroom

6. Teaching and Learning Methods for Disable Students:

No.	Teaching Method	
1	Additional Tutorials	
2	Online lectures and assignments	

7. Student Assessment:

7.1 Student Assessment Methods:

No.	Assessment Method	LOs
1	Mid Term Examination	B1.1, B1.2, B2.1
2	Semester work (Quizzes, presentation, Portfolio)	B1.1, B1.2, B2.1
3	Final Term Examination	B1.1, B1.2, B2.1

7.2 Assessment Schedule:

No.	Assessment Method	Weeks
1	Mid Term Examination	8
2	Semester work (Quizzes, presentation, Portfolio)	weekly
3	Final Term Examination	15

7.3 Weighting of Assessments:

No.	Assessment Method	Weights
1	Mid Term Examination	20 %
2	Semester work (Quizzes, presentation, Portfolio)	10 %
3	Final Term Examination	70 %
	Total	100 %

8. List of References

No.	Reference List		
1	Sharma, Er Dr S K., "Irrigation Engineering and Hydraulic Structures", S. Chand Publishing, 2017.		
2	Santosh Kumar Garg, "Irrigation Engineering and Hydraulic Structures: Water Resources Engineering, Vol. II", Khanna Publishers Pvt. Ltd, 2016.		
3	Sheng-Hong Chen " Hydraulic Structures. " Springer-Verlag Berlin Heidelberg, 2015.		
4	Varshney Rs. "Theory And Design of Irrigation Structures Vol 2." ISBN: 978-8185240480, Nem Chand & B, 2007		

Course Specifications: Design of water structures 1

9. Facilities Required for Teaching and Learning:

No.	Facility
1	Lecture Classroom
2	White Board
3	Data Show System
4	Visualizer
5	Presenter
6	Sound System

10. Matrix of Knowledge and Skills of the Course:

No.	Topic	aim	LO's
1	Introduction to hydraulic structures – criteria and methods of hydraulic	1	B1.1
1	design and analysis	1	
	Types of retaining walls (gravity made of bricks, stones and plain		B1.1, B1.2, B2.1
2	concrete), cantilever and counterfort of reinforced concrete - structural	1	
	design of retaining walls.		
3	Hydraulic losses in water structures - hydraulic design of water	1	B1.1, B1.2
3	structures	1	
4	Structural design of crossing structures, culverts, siphons and aqueduct		B1.1, B1.2, B2.1
5	Hydraulic design of bridges and heading up calculations		B1.1, B1.2
6	Hydraulic design of tail escapes – spillways and its functions		B1.1, B1.2, B2.1
7	Introduction to hydraulic tunnels.	1	B1.1
8	Applications: planning and design as well as layout and details drawing	1	B1.1, B1.2, B2.1
0	for simple hydraulic structures project.	1	

Course Coordinator: Assoc. Prof. Dr. Tharwat Eid Sarhan.

Head of Department: Assoc. Prof. Dr. Tharwat Eid Sarhan.

Date of Approval: / /2021

Course Specifications: Design of water structures 1

Course: Design of water structures 1			
Program LOs	Course LOs		
B1. Select appropriate and sustainable technologies	B1.1 Apply a full range of civil engineering		
for construction of buildings and infrastructures;	concepts and techniques of hydrology and		
using either numerical techniques or physical	hydraulics for solving water structures problems.		
measurements and/or testing by applying a full range			
of civil engineering concepts and techniques of:	B1.2 Select appropriate and sustainable		
Structural Analysis and Mechanics, Properties and	technologies for construction of irrigation and		
Strength of Materials, Surveying, Soil Mechanics,	hydraulics structures.		
Hydrology and Fluid Mechanics.			
B2. Achieve an optimum design of Reinforced	B2.1 Achieve an optimum design for retaining		
Concrete and Steel Structures, Foundations and	walls, escapes and water crossing structures.		
Earth Retaining Structures; and at least three of the			
following civil engineering topics: Transportation			
and Traffic, Roadways and Airports, Railways,			
Sanitary Works, Irrigation, Water Resources and			
Harbors; or any other emerging field relevant to the			
discipline.			

Course Specifications: $\underline{Hydraulics 2}$

University: Mansoura University
Faculty: Faculty of Engineering

Program: Civil Engineering Program

1. Basic Information

Program Title	Civil Engineering Program
Department offering the Program	Irrigation and Hydraulics Dept.
Department Responsible for the Course	Irrigation and Hydraulics Dept.
Course Code	IRH 321
Year/ Level	Third Year-First Semester
Specialization	Major
Authorization data of course specification	

Teaching Hours	Lectures	Tutorial	Practical
Teaching Hours	2	2	-

2. Course aims:

No.	Aim
6	Design different types of open channels using new building materials.

3. Learning Outcomes (LOs):

No.	LOs		
C1.1	Select appropriate and sustainable technologies for analysis and construction of open channels; using either numerical techniques or physical measurements; by applying a full range of civil engineering concepts and techniques of: soil mechanics and hydraulics.		
C2.1	Achieve an optimum design of erodible and non-erodible open channels.		

No.	Topics	week
1	Principles of open channels flow	W1
2	Principles of energy in open channels	W2, W3
3	Flow resistance in open channels	W4
4	Principles of momentum in open channels	W5, W6
5	Study of gradually varied flow in channels	W7, W9
6	Velocity distributions in open channels	W10
7	Design methods of erodible and non-erodible open channels	W11, W12
8	Hydraulic modeling	W13

Course Specifications: $\underline{Hydraulics\ 2}$

5. Teaching and Learning Methods:

No.	Teaching Method	
1	Interactive lectures (hybrid learning)	
2	Discussion Sessions	
3	Flipped classroom	

6. Teaching and Learning Methods for Disable Students:

No.	Teaching Method		
1	Additional Tutorials		
2	Online lectures and assignments		

7. Student Assessment:

7.1 Student Assessment Methods:

No.	Assessment Method	LOs
1	Mid Term Examination	C1.1
2	Semester work (Quizzes, presentation, Portfolio)	C1.1- C2.1
3	Oral Examination	C1.1
4	Final Term Examination	C1.1- C2.1

7.2 Assessment Schedule:

No.	Assessment Method	Weeks
1	Mid Term Examination	8
2	Semester work (Quizzes, presentation, Portfolio)	weekly
3	Oral Examination	14
4	Final Term Examination	15

7.3 Weighting of Assessments:

No.	Assessment Method	Weights	
1	Mid Term Examination	12 %	
2	Semester work (Quizzes, presentation, Portfolio)	12 %	
3	Oral Examination	12 %	
4	Final Term Examination	64 %	
Total		100 %	

8. List of References

No.	Reference List		
1	Terry W. Sturm "Open Channel Hydraulics." 3 rd ed. McGraw Hill, 2021.		
2	Radecki-Pawlik, Artur, Stefano Pagliara, and Jan Hradecky, eds. "Open Channel Hydraulics, River Hydraulic Structures and Fluvial Geomorphology: For Engineers, Geomorphologists and Physical Geographers." CRC Press, 2018.		
3	Glenn E. Moglen "Fundamentals of Open Channel Flow" CRC Press, 2015.		
4	Houghtalen, R.J., Akan, A.O.H., & Hwang, N.H.C. "Fundamentals of Hydraulic Engineering Systems." 4th ed. Prentice Hall, 2011.		

Course Specifications: Hydraulics 2

9. Facilities Required for Teaching and Learning:

No.	Facility
1	Lecture Classroom
2	White Board
3	Data Show System
4	Visualizer
5	Presenter
6	Sound System

10. Matrix of Knowledge and Skills of the Course:

No.	Topic	aim	LO's
1	Principles of open channels flow.	6	C1.1
2	Principles of energy in open channels.	6	C1.1
3	Flow resistance in open channels.	6	C1.1
4	Principles of momentum in open channels.	6	C1.1
5	Study of gradually varied flow in channels.	6	C1.1
6	Velocity distributions in open channels.	6	C1.1
7	Design methods of erodible and non-erodible open channels.	6	C1.1- C2.1
8	Hydraulic modeling.	6	C1.1

Course Coordinator: Prof. Dr. Mohsen Mohamed Ezzeldin.

Head of Department: Assoc. Prof. Dr. Tharwat Eid Sarhan.

Date of Approval: / / 2021.

Course Specifications: $\underline{Hydraulics\ 2}$

Course: Hydraulics 2			
Program LOs	Course LOs		
C1. Select appropriate and sustainable technologies	C1.1 Select appropriate and sustainable		
for construction of buildings, infrastructures, and	technologies for analysis and construction of open		
water structures; using either numerical techniques	channels; using either numerical techniques or		
or physical measurements and/or testing by	physical measurements; by applying a full range of		
applying a full range of civil engineering concepts	civil engineering concepts and techniques of: soil		
and techniques of: Structural Analysis and	mechanics and hydraulics.		
Mechanics, Properties and strength of Materials,			
Surveying, Soil Mechanics, Hydrology and			
Hydraulics.			
C2. Achieve an optimum design of Reinforced	C2.1 Achieve an optimum design of erodible and		
Concrete and Steel Structures, Foundations and	non-erodible open channels.		
Earth Retaining Structures, Transportation and			
Traffic, Roadways and Airports, Railways, Sanitary			
Works, Hydraulics, Water Resources and Harbors.			

University: Mansoura University Faculty: Faculty of Engineering

Program: Civil Engineering Program

1. Basic Information

Program Title	Civil Engineering Program	
Department offering the Program	Irrigation and Hydraulics Dept.	
Department Responsible for the Course	Irrigation and Hydraulics Dept.	
Course Code	IRH 371	
Year/ Level	Third Year-Second Semester	
Specialization	Major	
Authorization data of course specification		

Teaching Hours	Lectures	Tutorial	Practical
Teaching Hours	2	1	-

2. Course aims:

No.	Aim
6	Design different types of advanced irrigation systems projects using new building materials.

3. Learning Outcomes (LOs):

No.	LOs	
	Select appropriate and sustainable technologies for construction of water structures and water	
C1.1	networks; by applying a full range of civil engineering concepts and techniques in the field of	
	Hydrology and Hydraulics.	
	Select suitable components of the irrigation network from the perspective of strength, durability,	
C6.1	suitability of use to location, temperature, weather conditions and withstand operational water	
	pressures	
C7.1	Select the appropriate irrigation network system according to soil, topography and climate of the agricultural area.	
C7.2	Design a suitable water network for the modern irrigation systems.	

No.	Topics	week
1	Introduction to advanced irrigation systems, types and efficiencies.	W1
2	Sprinkler irrigation systems: Planning and design of network elements.	W2, W3, W4
3	Drip irrigation systems: Planning and design of network elements.	W5, W6, W7
4	Developed surface irrigation.	W9, W10
5	Design of low-pressure pipe networks.	W11, W12
6	Canal lining	W13, W14

5. Teaching and Learning Methods:

No.	Teaching Method
1	Interactive lectures (hybrid learning)
2	Discussion Sessions
3	Flipped classroom

6. Teaching and Learning Methods for Disable Students:

No.	Teaching Method
1	Additional Tutorials
2	Online lectures and assignments

7. Student Assessment:

7.1 Student Assessment Methods:

No.	Assessment Method	LOs	
1	Mid Term Examination	C1.1, C6.1, C7.1, C7.2	
2	Semester work (Quizzes, presentation, Portfolio)	C1.1, C6.1, C7.1, C7.2	
3	Oral Examination	C6.1, C7.1	
4	Final Term Examination	C1.1, C6.1, C7.1, C7.2	

7.2 Assessment Schedule:

No.	Assessment Method	Weeks	
1	Mid Term Examination	8	
2	Semester work (Quizzes, presentation, Portfolio)	weekly	
3	Oral Examination	14	
4	Final Term Examination	15	

7.3 Weighting of Assessments:

No.	Assessment Method	Weights	
1	Mid Term Examination	15 %	
2	Semester work (Quizzes, presentation, Portfolio)	15 %	
3	Oral Examination	10 %	
4	4 Final Term Examination 60 %		
	Total	100 %	

8. List of References

No.	Reference List		
1	Omran, El-Sayed E., and Abdelazim M. Negm, eds. "Technological and Modern Irrigation		
	Omran, El-Sayed E., and Abdelazim M. Negm, eds. "Technological and Modern Irrigation Environment in Egypt: Best Management Practices & Evaluation." Springer Nature, 2020.		
2	Megh R. Goyal, and P. Panigrahi, "Sustainable Micro Irrigation Design Systems for Agricultural		
	Megh R. Goyal, and P. Panigrahi, "Sustainable Micro Irrigation Design Systems for Agricultural Crops: Methods and Practices" CRC Press, Taylor & Francis Group, 2016.		
3	Biswas, Ranajit Kumar. "Drip and Sprinkler Irrigation." New Delhi, New India Publishing		
	Agency, 2015.		

9. Facilities Required for Teaching and Learning:

No.	Facility
1	Lecture Classroom
2	White Board
3	Data Show System
4	Visualizer
5	Presenter
6	Sound System

10. Matrix of Knowledge and Skills of the Course:

No.	Topic	aim	LO's
1	Introduction to advanced irrigation systems, types and efficiencies.	6	C1.1
2	Sprinkler irrigation systems: Planning and design of network elements.	6	C1.1, C6.1, C7.1, C7.2
3	Drip irrigation systems: Planning and design of network elements.	6	C1.1, C6.1, C7.1, C7.2
4	Developed surface irrigation.	6	C1.1, C6.1
5	Design of low-pressure pipe networks.	6	C1.1, C6.1, C7.1, C7.2
6	Canal lining	6	C1.1, C6.1

Course Coordinator: Dr. Ahmad Mohammad Sedki Elhamrawy.

Head of Department: Assoc. Prof. Dr. Tharwat Eid Sarhan.

Date of Approval: / /2021

Course: Irrigation elective 1-Advanced irrigation systems			
Program LOs	Course LOs		
C1. Select appropriate and sustainable technologies	C1.1 Select appropriate and sustainable		
for construction of buildings, infrastructures, and	technologies for construction of water structures		
water structures; using either numerical techniques	and water networks; by applying a full range of		
or physical measurements and/or testing by	civil engineering concepts and techniques in the		
applying a full range of civil engineering concepts	field of Hydrology and Hydraulics.		
and techniques of: Structural Analysis and			
Mechanics, Properties and strength of Materials,			
Surveying, Soil Mechanics, Hydrology and			
Hydraulics.			
C6. Select appropriate building materials from the	C6.1 Select suitable components of the irrigation		
perspective of strength, durability, suitability of use	network from the perspective of strength,		
to location, temperature, weather conditions and	durability, suitability of use to location,		
impacts of seawater and environment.	temperature, weather conditions and withstand		
	operational water pressures		
C7. Select and design adequate water control	C7.1 Select the appropriate irrigation network		
structures, irrigation and water networks, sewerage	system according to soil, topography and climate of		
systems and pumping stations.	the agricultural area.		
	C7.2 Design a suitable water network for the		
	modern irrigation systems.		

Course Specifications: <u>Irrigation elective 1</u> <u>Hydraulic analysis of water distribution systems</u>

University: Mansoura University Faculty: Faculty of Engineering

Program: Civil Engineering Program

1. Basic Information

Program Title	Civil Engineering Program
Department offering the Program	Irrigation and Hydraulics Dept.
Department Responsible for the Course	Irrigation and Hydraulics Dept.
Course Code	IRH 372
Year/ Level	Third Year-Second Semester
Specialization	Major
Authorization data of course specification	

Teaching Hours	Lectures	Tutorial	Practical
Teaching Hours	2	1	-

2. Course aims:

No.	Aim	
6	Design different types of water distribution systems including, transport and distribution systems	
0	and water networks using new building materials.	

3. Learning Outcomes (LOs):

No.	LOs		
C1.1	Select appropriate and sustainable technologies for analysis and construction of water control structures, water networks and pump stations; By applying a wide range of hydraulics concepts, and computer software.		
C2.1	Achieve an optimum and economic design of water distribution systems, including water networks and pumping stations.		
C7.1	Select adequate water control structures, water networks and pumping stations.		

No.	Topics	week
1	Water distribution systems - water needs.	W 1
2	Basic principles of flow in pipes.	W2
3	Hydraulic analysis of compressed flow in networks.	W3, W4
4	Design of water transport and distribution systems - network construction	W5, W6
5	Workshops for network analysis and design using software.	W7
6	Economic analysis of networks.	W9, W10
7	Study a huge system of water through simplification methods Different.	W11
8	Rearrange existing networks with studied cases for application in different areas.	W12, W13

Course Specifications: <u>Irrigation elective 1</u> <u>Hydraulic analysis of water distribution systems</u>

5. Teaching and Learning Methods:

No.	Teaching Method	
1	Interactive lectures (hybrid learning)	
2	Discussion Sessions	
3	Flipped classroom	

6. Teaching and Learning Methods for Disable Students:

	No.	Teaching Method		
	1	Additional Tutorials		
ſ	2	Online lectures and assignments		

7. Student Assessment:

7.1 Student Assessment Methods:

No.	Assessment Method	LOs
1	Mid Term Examination	C1.1, C7.1
2	Semester work (Quizzes, presentation, Portfolio)	C1.1, C2.1, C7.1
3	Oral Examination	C1.1, C7.1
4	Final Term Examination	C1.1, C2.1, C7.1

7.2 Assessment Schedule:

No.	Assessment Method	Weeks
1	Mid Term Examination	8
2	Semester work (Quizzes, presentation, Portfolio)	weekly
3	Oral Examination	14
4	Final Term Examination	15

7.3 Weighting of Assessments:

No.	Assessment Method	Weights
1	Mid Term Examination	15 %
2	Semester work (Quizzes, presentation, Portfolio)	15 %
3	Oral Examination	10 %
4	Final Term Examination	60 %
	Total	100 %

8. List of References

No.	Reference List		
	S. Masood Husain "Guidelines for Planning and Design of Piped Irrigation Networks-Part-I &		
1	II" Central Water Commission Ministry of Water Resources, River Development & Ganga		
	Rejuvenation Government of India, 2017.		
2	American Water Works Association. "Computer modeling of water distribution systems-		
2	Manual of Water Supply Practices - M32 " 3 rd ed. American Water Works Association, 2012.		
3	Swamee, Prabhata K., and Ashok K. Sharma. "Design of water supply pipe networks", John		
3	Wiley & Sons, 2008.		

Course Specifications: <u>Irrigation elective 1</u> Hydraulic analysis of water distribution systems

9. Facilities Required for Teaching and Learning:

No.	Facility
1	Lecture Classroom
2	White Board
3	Data Show System
4	Visualizer
5	Presenter
6	Sound System

10. Matrix of Knowledge and Skills of the Course:

No.	Topic	aim	LO's
1	Water distribution systems - water needs.	6	C1.1
2	Basic principles of flow in pipes.	6	C1.1
3	Hydraulic analysis of compressed flow in networks.	6	C1.1
4	Design of water transport and distribution systems - network construction.	6	C1.1, C2.1, C7.1
5	Workshops for network analysis and design using software.	6	C1.1, C2.1, C7.1
6	Economic analysis of networks.	6	C2.1
7	Study a huge system of water through simplification methods Different.	6	C1.1, C2.1, C7.1
8	Rearrange existing networks with studied cases for application in different areas.	6	C1.1, C2.1, C7.1

Course Coordinator: Assoc. Prof. Dr. Riham Mohsen Ezzeldin.

Head of Department: Assoc. Prof. Dr. Tharwat Eid Sarhan.

Date of Approval: / / 2021.

Course Specifications: <u>Irrigation elective 1</u> <u>Hydraulic analysis of water distribution systems</u>

Course: Irrigation elective 1- Hydraulic analysis of water distribution systems			
Program LOs	Course LOs		
C1. Select appropriate and sustainable technologies	C1.1 Select appropriate and sustainable		
for construction of buildings, infrastructures, and	technologies for analysis and construction of water		
water structures; using either numerical techniques	control structures, water networks and pump		
or physical measurements and/or testing by	stations; By applying a wide range of hydraulics		
applying a full range of civil engineering concepts	concepts, and computer software.		
and techniques of: Structural Analysis and			
Mechanics, Properties and strength of Materials,			
Surveying, Soil Mechanics, Hydrology and			
Hydraulics.			
C2. Achieve an optimum design of Reinforced	C2.1 Achieve an optimum and economic design of		
Concrete and Steel Structures, Foundations and	water distribution systems, including water		
Earth Retaining Structures, Transportation and	networks and pumping stations.		
Traffic, Roadways and Airports, Railways, Sanitary			
Works, Hydraulics, Water Resources and Harbors.			
C7. Select and design adequate water control	C7.1 Select adequate water control structures,		
structures, irrigation and water networks, sewerage	water networks and pumping stations.		
systems and pumping stations.			

University: Mansoura University Faculty: Faculty of Engineering

Program: Civil Engineering Program

1. Basic Information

Program Title	Civil Engineering Program	
Department offering the Program	Irrigation and Hydraulics Dept.	
Department Responsible for the Course	Irrigation and Hydraulics Dept.	
Course Code	IRH 373	
Year/ Level	Third Year-Second Semester	
Specialization	Major	
Authorization data of course specification		

Teaching Hours	Lectures	Tutorial	Practical
Teaching Hours	2	1	-

2. Course aims:

No				Aim					
6	Design different type	pes of storm	drainage	networks	in	irrigation	and	hydraulics	engineering,
0	using one of the exis	sting projects of	detailed st	tudy.					

3. Learning Outcomes (LOs):

No.	LOs
C7.1	Select one of the existing projects detailed study for the design and analysis of storm drainage networks.
C7.2	Design storm water collection network with its different components using numerical models.
C9.1	Design the rainwater courses for protection against the erosion.
C9.2	Construct rainwater harvesting network and its applications.

No.	Topics	week
1	Introduction	W1
2	Hydrological data for the design and analysis of storm drainage networks	W2
3	Design of network entrances	W3
4	Hydraulic analysis of networks	W4
5	Planning of rainwater harvesting facilities	W5
6	Design of rain collection ponds	W6
7	Numerical models of storm water collection networks design	W7
8	Applications and design of rainwater harvesting networks	W9
9	Study of the effects of erosion as a result of rainwater courses	W10
10	Detailed study of one of the existing projects detailed study	W11, W12
11	Study the storm water networks and the factors affecting the problems.	W13, W14

5. Teaching and Learning Methods:

No.	Teaching Method
1	Interactive lectures (hybrid learning)
2	Discussion Sessions
3	Flipped classroom

6. Teaching and Learning Methods for Disable Students:

	No.	Teaching Method	
	1	Additional Tutorials	
Ī	2	Online lectures and assignments	

7. Student Assessment:

7.1 Student Assessment Methods:

No.	Assessment Method	LOs		
1	Mid Term Examination	C7.2, C9.2		
2	Semester work (Quizzes, presentation, Portfolio)	C7.2, C9.1, C9.2		
3	Oral Examination	C7.1, C9.2		
4	Final Term Examination	C7.1, C7.2, C9.1, C9.2		

7.2 Assessment Schedule:

No.	Assessment Method	Weeks
1	Mid Term Examination	8
2	Semester work (Quizzes, presentation, Portfolio)	weekly
3	Oral Examination	14
4	Final Term Examination	15

7.3 Weighting of Assessments:

No.	Assessment Method	Weights
1	Mid Term Examination	15 %
2	Semester work (Quizzes, presentation, Portfolio)	15 %
3	Oral Examination	10 %
4	Final Term Examination	60 %
	Total	100 %

8. List of References

No.	Reference List
1	Hormoz Pazwash "Urban Storm Water Management, Second Edition" 2 nd ed, CRC Press ,2016
2	Lancaster, B., "Rainwater harvesting for drylands and beyond", No. 628.11 L244r, Rain source Press, 2013.

9. Facilities Required for Teaching and Learning:

No.	Facility
1	Lecture Classroom
2	White Board
3	Data Show System
4	Visualizer
5	Presenter
6	Sound System

10. Matrix of Knowledge and Skills of the Course:

No.	Topic	aim	LO's
1	Introduction	6	C7.1, C7.2
2	Hydrological data for the design and analysis of storm drainage networks	6	C7.2
3	Design of network entrances	6	C7.2
4	Hydraulic analysis of networks	6	C7.2
5	Planning of rainwater harvesting facilities		C7.2, C9.2
6	Design of rain collection ponds 6		C7.2
7	Numerical models of storm water collection networks design 6 C7.2		C7.2
8	Applications and design of rainwater harvesting networks 6 C9.2		C9.2
9	Study of the effects of erosion as a result of rainwater courses 6 C9.1		C9.1
10	Detailed study of one of the existing projects detailed study 6		C7.1
11	Study the storm water networks and the factors affecting the problems. 6 C7.1, C9.2		C7.1, C9.2

Course Coordinator: Assoc. Prof. Dr. Hossam Abd-Elaziz.

Head of Department: Assoc. Prof. Dr. Tharwat Eid Sarhan.

Date of Approval: / /2021

Course: Irrigation elective 1- Design of storm drainage networks				
Program LOs	Course LOs			
C7. Select and design adequate water control	C7.1 Select one of the existing projects detailed			
structures, irrigation and water networks, sewerage	study for the design and analysis of storm drainage			
systems and pumping stations.	networks.			
	C7.2 Design storm water collection network with			
	its different components using numerical models.			
C9. Design and construct structures for protection	C9.1 Design the rainwater courses for protection			
against dangers of unexpected natural events such	against the erosion.			
as floods and storms.	C9.2 Construct rainwater harvesting network and			
	its applications.			

1. Basic Information

Program Title	Civil Engineering Program			
Department offering the Program	Faculty Administration			
Department Responsible for the Course	Faculty Admin	Faculty Administration		
Course Code	MUR115			
Year/ Level	Third Year-Second Semester			
Specialization	University requirement			
Authorization data of course specification				
m 14 1	Lectures	Tutorial	Practical	
Teaching hours	2	0	0	

2. Course aims:

No.	aim	
1	Apply the code of ethics for engineers on all design processes.	

3. Learning Outcomes (LOs):

No.	LOs	
A3.1	Illustrate the concepts of values and ethics.	
A3.2	Identify the importance of adherence to values and ethics in the	
	engineering field.	
A3.3	Describe the fundamental principles of ethics.	

No.	Topics
1	Scope, Human Values: Morals, Values and Ethics
2	Integrity – Work Ethic – Service Learning – Civic Virtue – Respect for Others
3	Living Peacefully – Caring - Sharing – Honesty – Courage
4	Valuing Time – Co-operation – Commitment – Empathy – Self-Confidence – Character –
5	Spirituality, Engineering as experimentation - engineers as responsible experimenters - codes of ethics
6	A balanced outlook on law, the code of ethics for engineers – NSPE guidelines -
	Fundamental principles.

5. Teaching and Learning Methods:

No.	Teaching Method	LOs
1	Interactive lectures (hybrid learning)	A3.1, A3.2, A3.3
2	Flipped classroom	A3.1, A3.2, A3.3

6. Teaching and Learning Methods 0f Disable Students:

No.	Teaching Method	Reason
1	Non	

7. Student Assessment:

7.1 Student Assessment Methods:

No.	Assessment Method	LOs
1	Semester work (reports)	A3.1, A3.2, A3.3
2	Final exam.	A3.1, A3.2, A3.3

7.2 Assessment Schedule:

No.	Assessment Method	Weeks
1	Semester work (reports)	7,12
2	Final exam.	14

7.3 Weighting of Assessment:

No.	Assessment Method	Marking	Weights
1	Semester work (reports)	15	30 %
2	Final exam.	35	70 %
Total		50	100%

8. List of References

No.	Reference List	
1	Stephan, David R. Bowman, William J. Park, Benjamin L. Sill, Matthew W. Ohland, "Thinking like an engineer", Published by Pearson 2018.	
2	The NSPE "Ethics reference guide" LEGAL@NSPE.ORG, 2018	

9. Facilities Required for Teaching and Learning:

No.	Facility
1	Lecture Classroom
2	Library
3	Internet
4	Data Show System
5	Visualizer
6	Presenter

10. Matrix of Knowledge and Skills of the Course:

No.	Торіс	aim	LOs
1	Scope, Human Values: Morals, Values and Ethics	1	A3.1
2	Integrity – Work Ethic – Service Learning – Civic	1	A3.1, A3.2
2	Virtue – Respect for Others	1	
2	Living Peacefully – Caring - Sharing – Honesty –	1	A3.1, A3.2
3	Courage	1	
4	Valuing Time – Co-operation – Commitment –	1	A3.1, A3.2
4	Empathy – Self-Confidence – Character –	1	
	Spirituality, Engineering as experimentation -		A3.2, A3.3
5	engineers as responsible experimenters - codes of	1	
	ethics		
6	A balanced outlook on law, The code of ethics for		A3.2, A3.3
	engineers – NSPE guidelines - Fundamental	1	
	principles.		

	O 11 4
Course	Coordinator:

Head of Department:

Date of Approval:

Professional ethics		
Program' LOs	Course LOs	
A3. Apply engineering design processes to produce cost-effective solutions that meet specified needs with consideration for global,	-	
cultural, social, economic, environmental, ethical and other aspects as appropriate to the discipline and within the principles and contexts of sustainable design and development.	1	
	A3.3 Describe the fundamental principles of ethics.	

University: Mansoura University
Faculty: Faculty of Engineering
Program: Civil Engineering Program

1. Basic Information

Program Title	Civil Engineering Program	
Department offering the Program	Faculty Administration	
Department Responsible for the Course	Faculty Administration	
Course Code	MUR 233	
Year/ Level	Third Year-First Semester	
Specialization	Minor	
Authorization data of course specification		

Too shing Houng	Lectures	Tutorial	Practical
Teaching Hours	2	1	0

2. Course aims:

No.	Aim
3	Design system with reducing the environmental pollution

3. Learning Outcomes (LOs):

A2.1	Develop appropriate experimentations for water pollution control	
A2.2	Conduct appropriate experimentations to reach the most appropriate solution of air pollution control	
A6.1	Plan engineering projects taking in consideration its effect on environment	
A6.2	Monitor implementation of engineering projects taking into consideration risk perception	
A6.3	Plan engineered Systems for Solid Wastes Management	

No.	Topics	week
1	Introduction and basics of EIA	1
2	international regulations governing environmental conservation	2
3	Egyptian environmental law and other legislation related to the environment- environmental ethics and regulation-environmental impact assessment procedures	3-4
4	Classification of projects into categories according to the risk and size of projects	5
5	Requirements for providing environmental impact assessment studies	6
6	Life cycle assessment for industrial systems components	7
7	material and energy balances	9
8	the impact of projects on wildlife and rare species	10
9	regulations for gas emissions-environmental systems	11
10	risk perception	12
11	assessment and management	13
12	Water pollution control	14

5. Teaching and Learning Methods:

No.	Teaching Method
1	Interactive lectures (hybrid learning)
2	Discussion Sessions
3	Flipped classroom

6. Teaching and Learning Methods for Disable Students:

No.	Teaching Method	
1	Additional Tutorials	
2	Online lectures and assignments	

7. Student Assessment:

7.1 Student Assessment Methods:

No.	Assessment Method	LOs
1	Semester work (Quizzes, presentation, Portfolio)	A2.1 A2.2
2	Final Term Examination	A2.1 A2.2 A6.1 A6.2 A6.3

7.2 Assessment Schedule:

No.	Assessment Method	Weeks
1	Semester work (Quizzes, presentation, Portfolio)	weekly
2	Final Term Examination	15

7.3 Weighting of Assessments:

No.	Assessment Method	Weights
1	Semester work (Quizzes, presentation, Portfolio)	33.33%
2	Final Term Examination	66.67%
Total		100 %

8. List of References

No.	Reference List	
1	Judith Petts, "Handbook of Environmental Impact Assessment", 2010	
2	Baarrba Carroll, Josh Fothergill, Jo Murphy and Trevor Turpin, "Environmental Impact Assessment Handbook", 2015	

9. Facilities Required for Teaching and Learning:

No.	Facility
1	Lecture Classroom
2	White Board
3	Data Show System
4	Visualizer
5	Presenter
6	Sound System

10. Matrix of Knowledge and Skills of the Course:

No ·	Торіс	aim	LO's
1	Introduction and basics of EIA	3	A2.1
2	international regulations governing environmental conservation	3	A2.1
3	Egyptian environmental law and other legislation related to the environment-environmental ethics and regulation-environmental impact assessment procedures	3	A2.1 A2.2
4	Classification of projects into categories according to the risk and size of projects	3	A2.1 A6.2
5	Requirements for providing environmental impact assessment studies	3	A2.1
6	Life cycle assessment for industrial systems components	3	A2.2
7	material and energy balances	3	A6.1 A6.2
8	the impact of projects on wildlife and rare species	3	A2.1 A6.3
9	regulations for gas emissions-environmental systems	3	A2.2
10	risk perception	3	A6.2
11	assessment and management	3	A2.1 A2.2 A6.1
12	Water pollution control	3	A2.1 A6.3

Course Coordinator:

Head of Department: Prof. Dr.

Date of Approval:

Course: Environmental issues			
Program LOs	Course LOs		
A2. Develop and conduct appropriate experimentation and/or simulation, analyze, and	A2.1 Develop appropriate experimentations for water pollution control		
interpret data, assess, and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions.	A2.2 conduct appropriate experimentations to reach the most appropriate solution of air pollution control		
A6. Plan, supervise, and monitor implementation	A6.1 plan engineering projects taking into		
of engineering projects, taking into consideration other trades requirements new situations.	consideration its effect on environment		
outer trades requirements new stratumons.	A6.2 monitor implementation of engineering projects taking into consideration risk perception		
	A6.3 Plan engineered Systems for Solid Wastes		
	Management.		

Course Specifications: Highway and Airport Engineering

University: Mansoura University
Faculty: Faculty of Engineering
Program: Civil Engineering Program

1. Basic Information

Program Title	Civil Engineering Program	
Department offering the Program	Public Works Engineering Department	
Department Responsible for the Course	Public Works Engineering Department	
Course Code	PWE321	
Year/ Level	Third Year-First Semester	
Specialization	Major	
Authorization data of course specification		

Tooching House	Lectures	Tutorial	Practical
Teaching Hours	4	1	

2. Course aims:

No.	Aim
1	Design different types of Highway projects such as flexible and rigid pavement
	using suitable techniques.

3. Learning Outcomes (LOs):

C1.1	Select appropriate technologies for construction pavements.
C1.2	Apply a full range of techniques for material selection and design.
C2.1	Achieve an optimum design of Roadways and Airports

No.	Topics	week
1	Introduction to road and airport engineering	1-2
2	Pavement Material Characterization	3-5
3	Design of asphalt mixtures	6-7
4	Tests of asphalt mixtures	9
5	Design of horizontal and vertical curves	10
6	Traffic loads	11
7	Structure design of flexible and rigid pavements	12
8	Stresses in pavements	13
9	Selection of airport location, planning, elevation, runways, apron area.	14

Course Specifications: Highway and Airport Engineering

5. Teaching and Learning Methods:

No.	Teaching Method	
1	Interactive lectures (hybrid learning)	
2	Discussion Sessions	
3	Flipped classroom	

6. Teaching and Learning Methods for Disable Students:

No.	Teaching Method		
1	Additional Tutorials		
2	Online lectures and assignments		

7. Student Assessment:

7.1 Student Assessment Methods:

No.	Assessment Method	LOs
1	Semester work (Quizzes, presentation, Portfolio)	C1.2
2	Oral Examination	C1.2
3	Final Term Examination	C1.1, C1.2, C2.1

7.2 Assessment Schedule:

No.	Assessment Method	Weeks
1	Semester work (Quizzes, presentation, Portfolio)	weekly
2	Oral Examination	14
3	Final Term Examination	15

7.3 Weighting of Assessments:

No.	Assessment Method	Weights
1	Semester work (Quizzes, presentation, Portfolio)	26.7 %
2	Oral Examination	13.3 %
3	Final Term Examination	60.0 %
Total		100 %

8. List of References

No.	Reference List		
	E. Ray and Prithvi S. Kandhal and Freddy L. Roberts and Y. Richard Kim and Dah-		
1	Yinn Lee and Thomas W. Kennedy Brown, "Hot Mix Asphalt Materials, Mixture		
	Design, and Construction", NCAT, 3rd edition, 2009.		
2	Athanassios Nikolaides, "Highway Engineering pavement, Materials and Control of		
	Quality", 2017.		

9. Facilities Required for Teaching and Learning:

No.	Facility
1	Lecture Classroom
2	White Board
3	Data Show System
4	Visualizer
5	Presenter
6	Sound System

10. Matrix of Knowledge and Skills of the Course:

No ·	Торіс	aim	LO's
1	Introduction to road and airport engineering	6	C1.1
2	Pavement Material Characterization	6	C1.2
3	Design of asphalt mixtures	6	C1.2
4	Tests of asphalt mixtures	6	C1.2
5	Design of horizontal and vertical curves	6	C2.1
6	Traffic loads	6	C2.1
7	Structure design of flexible and rigid pavements	6	C2.1
8	Stresses in pavements	6	C1.2
9	Selection of airport location, planning, elevation, runways, apron area.	6	C1.1, C1.2

Course Coordinator:

1. Sherief Masoud Ahmed El Badw

2. Ahmed Mohamed Metwally Awad

Head of Department: Prof. Dr. Muharram Fouad Abdo Allaa El Din

Date of Approval:

Course: Highway and Airport Engineering			
Program LOs	Course LOs		
C1. Select appropriate and sustainable technologies for	C1.1 Select appropriate technologies for		
construction of buildings, infrastructures, and water	construction pavements.		
structures; using either numerical techniques or			
physical measurements and/or testing by applying a	C1.2 Apply a full range of techniques for		
full range of civil engineering concepts and techniques	material selection and design.		
of: Structural Analysis and Mechanics, Properties and			
strength of Materials, Surveying, Soil Mechanics,			
Hydrology and Hydraulics.			
C2. Achieve an optimum design of Reinforced Concrete	C2.1 Achieve an optimum design of		
and Steel Structures, Foundations and Earth Retaining	Roadways and Airports		
Structures, Transportation and Traffic, Roadways and			
Airports, Railways, Sanitary Works, Hydraulics, Water			
Resources and Harbors.			

University: Mansoura University
Faculty: Faculty of Engineering
Program: Civil Engineering Program

1. Basic Information

Program Title	Civil Engineering Program
Department offering the Program	Public work Engineering Department
Department Responsible for the Course	Public work Engineering Department
Course Code	PWE 371
Year/ Level	Third Year-Second Semester
Specialization	Major
Authorization data of course specification	

Tooching House	Lectures	Tutorial	Practical
Teaching Hours	2	1	-

2. Course aims:

No.	Aim
6	Design different types of projects in public transportation, using new softwares
	and techniques.

3. Learning Outcomes (LOs):

C5.1	Evaluate The impact of Technological characteristics of public transportation systems on
	capacity, service quality, and cost.
C5.2	Practice the new methods for data collection and analysis, performance monitoring, route
	and network design, frequency determination, and vehicle and crew scheduling
C8.1	Use the definition and the role of public transportation systems.
C8.2	Evaluate the impact of Technological characteristics of public transportation systems on
	capacity, service quality, and cost.

No.	Topics	week
1	The evolution of urban public transportation modes, systems and services.	1
2	The role of public transportation systems.	2
3	Various kinds of public transportation systems.	3-4
4	Technological characteristics of public transportation systems.	5-6
5	The impact of Technological characteristics of public transportation systems on capacity, service quality, and cost.	7-9
6	Current practice for data collection and analysis, performance monitoring, route and network design, frequency determination, and vehicle and crew scheduling	10-12
7	New methods for data collection and analysis, performance monitoring, route and network design, frequency determination, and vehicle and crew scheduling	13-14

5. Teaching and Learning Methods:

No.	Teaching Method
1	Interactive lectures (hybrid learning)
2	Discussion Sessions
3	Flipped classroom

6. Teaching and Learning Methods for Disable Students:

No.	Teaching Method	
1	Additional Tutorials	
2	Online lectures and assignments	

7. Student Assessment:

7.1 Student Assessment Methods:

No.	Assessment Method	LOs
1	Semester work (Quizzes, presentation, Portfolio)	C8.2,C5.2
2	Oral Examination	C8.1,C5.2
3	Final Term Examination	C8.2,C8.2,C5.1,C5.2

7.2 Assessment Schedule:

No.	Assessment Method	Weeks
1	Semester work (Quizzes, presentation, Portfolio)	weekly
2	Oral Examination	14
3	Final Term Examination	15

7.3 Weighting of Assessments:

No.	Assessment Method	Weights
1	Semester work (Quizzes, presentation, Portfolio)	30 %
2	Oral Examination	10 %
3	Final Term Examination	60 %
Total		100 %

8. List of References

No.	Reference List
1	Meyer, Michael D. "Transportation planning handbook", Wiley ,2016.
2	"Transit Capacity and Quality of Service Manual", 3rd Edition, Transportation Research Board, 2013.

9. Facilities Required for Teaching and Learning:

No.	Facility
1	Lecture Classroom
2	White Board
3	Data Show System
4	Visualizer
5	Presenter
6	Sound System

10. Matrix of Knowledge and Skills of the Course:

No .	Topic	aim	LO's
1	The evolution of urban public transportation modes, systems and services.	6	C8.1
2	The role of public transportation systems.	6	C8.1
3	Various kinds of public transportation systems .	6	C8.1,C8.2
4	Technological characteristics of public transportation systems .	6	C8.2
5	The impact of Technological characteristics of public transportation systems on capacity, service quality, and cost.	6	C8.2,C5.1
6	Current practice for data collection and analysis, performance monitoring, route and network design, frequency determination, and vehicle and crew scheduling	6	C5.1,C5.2
7	New methods for data collection and analysis, performance monitoring, route and network design, frequency determination, and vehicle and crew scheduling	6	C5.1,C5.2

Course Coordinator:

1. El Sayed Abd El Azim Mohamed El Shewally

2. Usama Elrawy Ali Shahdah

3. Sanya Riad El Agamy Foda

Head of Department: Prof. Dr. Muharram Fouad Abdo Allaa El Din

Mor Found

Date of Approval:

Course: Public transport systems		
Program LOs	Course LOs	
C5. Use the codes of practice of all civil engineering	C5.1 Evaluate The impact of	
disciplines effectively and Professionally.	Technological characteristics of public	
	transportation systems on capacity,	
	service quality, and cost.	
	C5 2 Provides the mass mode to fee date	
	C5.2 Practice the new methods for data	
	collection and analysis, performance	
	monitoring, route and network design,	
	frequency determination, and vehicle and	
	crew scheduling	
C8. Define and preserve properties (lands, real estates)	C8.1 Use the definition and the role of	
of individuals, communities, and institutions, through	public transportation systems.	
different surveying and GIS tools.		
	C8.2 Evaluate the impact of	
	Technological characteristics of public	
	transportation systems on capacity,	
	service quality, and cost.	

University: Mansoura University
Faculty: Faculty of Engineering
Program: Civil Engineering Program

1. Basic Information

Program Title	Civil Engineering Program	
Department offering the Program	Public Works engineering department	
Department Responsible for the Course	Public Works engineering department	
Course Code	PWE 372	
Year/ Level	Third Year-Second Semester	
Specialization	Major	
Authorization data of course specification		

Tooching House	Lectures	Tutorial	Practical
Teaching Hours	2	1	

2. Course aims:

No.	Aim
6	Design and assessment of different types of solid waste management systems

3. Learning Outcomes (LOs):

C8.1	Define solid waste management, Elements of solid waste management system, characteristics,
	components and waste sources.
C8.2	Define methods of reducing the generation of solid waste and different disposal methods.
C7.1	Design collection processes, temporary waste transfer stations, incineration plants and landfills
C7.2	Select an adequate solid waste management system by assessment of the proposed system.

No.	Topics	week
1	General introduction to solid waste management, Elements of solid waste	1-3
	management system, characteristics, components and waste sources.	
2	Methods of reducing the generation of solid waste, local storage of domestic solid	4-6
	waste	
3	Design of solid waste collection processes, temporary waste transfer stations,	7-9
	Recycling and reuse of wastes	
4	Safe disposal of waste	10
5	Incineration plants design	11
6	Landfills design	12
7	Assessment of solid waste management system	13
8	Industrial solid waste, hazardous waste	14

5. Teaching and Learning Methods:

No.	Teaching Method	
1	Interactive lectures (hybrid learning)	
2	Discussion Sessions	
3	Flipped classroom	

6. Teaching and Learning Methods for Disable Students:

No.	Teaching Method	
1	Additional Tutorials	
2	Online lectures and assignments	

7. Student Assessment:

7.1 Student Assessment Methods:

No.	Assessment Method	LOs
1	Semester work (Quizzes, presentation, Portfolio)	C7.1
2	Oral examination	C8.2
3	Final Term Examination	C8.1, C8.2, C7.1, C7.2

7.2 Assessment Schedule:

No.	Assessment Method	Weeks
1	Semester work (Quizzes, presentation, Portfolio)	weekly
2	Oral examination	14
3	Final Term Examination	15

7.3 Weighting of Assessments:

No.	Assessment Method	Weights
1	Semester work (Quizzes, presentation, Portfolio)	30%
2	Oral examination	10%
3	Final Term Examination	60%
Total		100 %

8. List of References

No.	Reference List		
1	George Tchobanoglous, F., "Handbook of Solid Waste Management, Second Edition", Kierth, 2004.		
2	Wong, J. W.C., Surampalli, R. Y., Selvam, A., Tyagi, R. D., "Sustainable Solid Waste Management", American Society of Civil Engineers, 2016.		

9. Facilities Required for Teaching and Learning:

No.	Facility
1	Lecture Classroom
2	White Board
3	Data Show System
4	Visualizer
5	Presenter
6	Sound System

10. Matrix of Knowledge and Skills of the Course:

No ·	Торіс	aim	LO's
	General introduction to solid waste		
1	management, Elements of solid waste	6	C8.1
1	management system, characteristics,		00.1
	components and waste sources.		
2	Methods of reducing the generation of solid	6	C8.2
	waste, local storage of domestic solid waste		
	Design of solid waste collection processes,	6	C8.2, C7.1
3	temporary waste transfer stations, Recycling		
	and reuse of wastes		
4	Safe disposal of waste	6	C8.2, C7.1
5	Incineration plants design		C8.2, C7.1
6	Landfills design	6	C8.2, C7.1
7	Assessment of solid waste management	6	C7.2
'	system		
8	Industrial solid waste, hazardous waste	6	C8.1

Course Coordinator:

1. Mohamed Ahmed Abd El Hakim Mosaad

2. Hani Mahanna Shehata El Said

Head of Department: Prof. Dr. Muharram Fouad Abdo Allaa El Din

Mor Ford

Date of Approval:

Course: Solid waste management		
Program LOs	Course LOs	
C8. Define and preserve properties (lands, real estates) of individuals, communities, and institutions, through different surveying and GIS tools.	C8.1 Define solid waste management, Elements of solid waste management system, characteristics, components and waste sources. C8.2 Define methods of reducing the generation of solid waste and different disposal methods.	
C7. Select and design adequate water control structures, irrigation and water networks, sewerage systems and pumping stations.	C7.1 Design collection processes, temporary waste transfer stations, incineration plants and landfills. C7.2 Select an adequate solid waste management system by assessment of the	

University: Mansoura University
Faculty: Faculty of Engineering
Program: Civil Engineering Program

1. Basic Information

Program Title	Civil Engineering Program	
Department offering the Program	Public Works engineering department	
Department Responsible for the Course	Public Works engineering department	
Course Code	PWE 373	
Year/ Level	Third Year-Second Semester	
Specialization	Major	
Authorization data of course specification		

Tooching House	Lectures	Tutorial	Practical
Teaching Hours	2	1	

2. Course aims:

No.	Aim			
6	Design of different water treatment facilities using the appropriate treatment technology.			

3. Learning Outcomes (LOs):

C8.1	Define different pollutants in water and advanced treatment technologies.		
C8.2	Define the design criteria of treatment technologies and wastewater recycling.		
C7.1	Select an adequate water treatment technology according to the constituent being treated.		
C7.2	Select an adequate treatment technology for water and wastewater based on the environmental impact of each of them.		

No.	Topics	week
	Unconventional pollutants and hazardous pollutants in water - introduction	1-3
1	to water purification and domestic and industrial wastewaster treatment	
	using advanced technologies.	
2	Design criteria and selection of appropriate treatment technologies - adsorption	4-6
	process using Active carbon	
3	Iron and manganese removal — Ion exchange process	7-9
4	Water hardness	10
5	Water desalination	11
6	Membrane technologies	12
7	Reuse of wastewater after treatment – Aspects and criteria of wastewater	13
/	recycling	
8	Environmentally friendly technologies for water and wastewater treatment	14
0	– Anaerobic treatment	

5. Teaching and Learning Methods:

No.	Teaching Method	
1	Interactive lectures (hybrid learning)	
2	Discussion Sessions	
3	Flipped classroom	

6. Teaching and Learning Methods for Disable Students:

No.	Teaching Method		
1	Additional Tutorials		
2	Online lectures and assignments		

7. Student Assessment:

7.1 Student Assessment Methods:

No.	Assessment Method	LOs
1	Semester work (Quizzes, presentation, Portfolio)	C7.1
2	Oral examination	C8.1
3	Final Term Examination	C8.1, C8.2, C7.1, C7.2

7.2 Assessment Schedule:

No.	Assessment Method	Weeks
1	Semester work (Quizzes, presentation, Portfolio)	weekly
2	Oral examination	14
3	Final Term Examination	15

7.3 Weighting of Assessments:

No.	Assessment Method	Weights
1	Semester work (Quizzes, presentation, Portfolio)	30%
2	Oral examination	10%
3	Final Term Examination	60%
Total		100 %

8. List of References

No.	Reference List
1	Metcalf & Eddy, "Wastewater Engineering(Treatment, Disposal & Reuse)", Fourth Edition, Mc Graw-Hill Book Co., 2003.
2	Hussain C. M., Kharisov B., "Advanced Environmental Analysis", First Edition, Royal Society of Chemistry, 2016.

9. Facilities Required for Teaching and Learning:

No.	Facility
1	Lecture Classroom
2	White Board
3	Data Show System
4	Visualizer
5	Presenter
6	Sound System

10. Matrix of Knowledge and Skills of the Course:

No ·	Торіс	aim	LO's
1	Unconventional pollutants and hazardous pollutants in water - introduction to water purification and domestic and industrial wastewaster treatment using advanced technologies.	6	C8.1
2	Design criteria and selection of appropriate treatment technologies - adsorption process using Active carbon	6	C8.2, C7.1
3	Iron and manganese removal — Ion exchange process	6	C8.2, C7.1
4	Water hardness	6	C7.1
5	Water desalination	6	C8.2, C7.1
6	Membrane technologies	6	C8.2, C7.1

7	Reuse of wastewater after treatment – Aspects and criteria of wastewater recycling	6	C8.2
8	Environmentally friendly technologies for water and wastewater treatment – Anaerobic treatment	6	C7.2

Course Coordinator:

1. Mohamed Ahmed Abd El Hakim Mosaad

2. Hani Mahanna Shehata El Said

Head of Department: Prof. Dr. Muharram Fouad Abdo Allaa El Din

Mor Found

Date of Approval:

Course: Advanced sanitary	y engineering
Program LOs	Course LOs
C8. Define and preserve properties (lands, real estates)	C8.1 Define different pollutants in water
of individuals, communities, and institutions, through	and advanced treatment technologies.
different surveying and GIS tools.	
	C8.2 Define the design criteria of
	treatment technologies and wastewater
	recycling.
C7. Select and design adequate water control structures,	C7.1 Select an adequate water treatment
irrigation and water networks, sewerage systems and	technology according to the constituent
pumping stations.	being treated.
	C7.2 Select an adequate treatment
	technology for water and wastewater

based on the environmental impact of
each of them.

University: Mansoura University
Faculty: Faculty of Engineering
Program: Civil Engineering Program

1. Basic Information

Program Title	Civil Engineering Program	
Department offering the Program	Structural Engineering Department	
Department Responsible for the Course	Structural Engineering Department	
Course Code	STE331	
Year/ Level	Third Year- First Semester	
Specialization	Major	
Authorization data of course specification		

Teaching Hours	Lectures	Tutorial	Practical
	4	2	

2. Course aims:

No.	Aim
1	Master a wide range of design knowledge and techniques to use them in
1	design of different reinforced concrete systems.

3. Learning Outcomes (LOs):

B1.1	Select appropriate system according to the given parameters.
B1.2	Applying Structural Analysis and Mechanics, Properties and Strength of Materials.
B2.1	Achieve an optimum design of different types reinforced concrete slabs, stairs and
	beams subjected to Torsional moment.
B2.2	Achieve an optimum design of reinforced concrete Frames, Arches, Connections and
	saw tooth systems.

No.	Topics	week	
1	Design of hollow block slabs (ribbed slabs) according to ECP 203		
2	Design of paneled beams systems	3	
3	Torsional moments and their influence on concrete structures - Design and analysis of reinforced concrete sections subjected to torsion		
4	Design and analysis of different systems of reinforced concrete stairs	5	
5	Punching shear in flat slabs - Moment transfer from flat slabs to columns - Design of flat slabs according to ECP 203.	6	
6	Roofs of halls using reinforced concrete simple and continuous beams	7	
7	Design of reinforced concrete frames - Design of circular concrete frames - Design of different types of hinged supports	9-10	
8	Different types of reinforced concrete arches - Design of concrete arches with tie - Design of reinforced concrete circular and arched slabs	11	

9	Design of concrete halls using different types of girders	12
10	Design of saw-tooth concrete slabs - Structural systems that require natural lighting	13-14
	- Design of different types of saw-tooth systems	

5. Teaching and Learning Methods:

No.	Teaching Method	
1	Interactive lectures (hybrid learning)	
2	Discussion Sessions	
3	Flipped classroom	

6. Teaching and Learning Methods for Disable Students:

No.	Teaching Method	
1	Additional Tutorials	
2	Online lectures and assignments	

7. Student Assessment:

7.1 Student Assessment Methods:

No.	Assessment Method	LOs
1	Mid Term Examination	B2.1
2	Semester work (Quizzes, presentation, Portfolio)	B2.1, B2.2
3	Oral Examination	B1.1, B1.2
4	Final Term Examination	B1.1, B1.2, B2.1, B2.2

7.2 Assessment Schedule:

No.	Assessment Method	Weeks
1	Mid Term Examination	8
2	Semester work (Quizzes, presentation, Portfolio)	weekly
3	Oral Examination	14
4	Final Term Examination	15

7.3 Weighting of Assessments:

No.	Assessment Method	Weights
1	Mid Term Examination	11.43 %
2	Semester work (Quizzes, presentation, Portfolio)	17.14 %
3	Oral Examination	14.29 %
4	Final Term Examination	57.14 %
Total		100 %

8. List of References

No.	Reference List		
1	Macgregor, J.G., "Reinforced Concrete Mechanics & Design", Prentice-Hall International Inc., New Jersey, USA, 2016.		
2	El-behairy, S., "Reinforced Concrete Design Handbook", sixth edition, Cairo, 2019.		

9. Facilities Required for Teaching and Learning:

No.	Facility
1	Lecture Classroom
2	White Board
3	Data Show System
4	Visualizer
5	Presenter
6	Sound System

10. Matrix of Knowledge and Skills of the Course:

No.	Topic	aim	LO's
1	Design of hollow block slabs (ribbed slabs) according to ECP 203	1	B1.2, B2.1
2	Design of paneled beams systems	1	B2.1
3	Torsional moments and their influence on concrete structures - Design and analysis of reinforced concrete sections subjected to torsion	1	B2.1
4	Design and analysis of different systems of reinforced concrete stairs	1	B2.1
5	Punching shear in flat slabs - Moment transfer from flat slabs to columns - Design of flat slabs according to ECP 203.	1	B2.1
6	Roofs of halls using reinforced concrete simple and continuous beams	1	B1.1, B2.2
7	Design of reinforced concrete frames - Design of	1	B2.2

	circular concrete frames - Design of different types of hinged supports		
8	Different types of reinforced concrete arches - Design of concrete arches with tie - Design of reinforced concrete circular and arched slabs	1	B2.2
9	Design of concrete halls using different types of girders	1	B2.2
10	Design of saw-tooth concrete slabs - Structural systems that require natural lighting - Design of different types of saw-tooth systems	1	B2.2

Course Coordinator: Prof. Dr. Hamed Asker

Head of Department: Prof. Dr. Ahmed Mahmoud Yousef

Date of Approval: December 2019

Course: Reinforced C	oncrete 2
Program LOs	Course LOs
B1. Select appropriate and sustainable technologies	B1.1 Select appropriate system
for construction of buildings and infrastructures;	according to the given parameters.
using either numerical techniques or physical	
measurements and/or testing by applying a full	B1.2 Applying Structural Analysis and
range of civil engineering concepts and techniques	Mechanics, Properties and Strength of
of: Structural Analysis and Mechanics, Properties	Materials.
and Strength of Materials, Surveying, Soil	
Mechanics, Hydrology and Fluid Mechanics.	
B2. Achieve an optimum design of Reinforced	B2.1 Achieve an optimum design of
Concrete and Steel Structures, Foundations and	different types reinforced concrete
Earth Retaining Structures; and at least three of the	slabs, stairs and beams subjected to
following civil engineering topics: Transportation	Torsional moment.
and Traffic, Roadways and Airports, Railways,	
Sanitary Works, Irrigation, Water Resources and	B2.2 Achieve an optimum design of
Harbors; or any other emerging field relevant to the	reinforced concrete Frames, Arches,
discipline.	Connections and saw tooth systems.

University: Mansoura University
Faculty: Faculty of Engineering
Program: Civil Engineering Program

1. Basic Information

Program Title	Civil Engineering Program
Department offering the Program	Structural Engineering department
Department Responsible for the Course	Structural Engineering department
Course Code	STE351
Year/ Level	Third year – Second semester
Specialization	Major
Authorization data of course specification	

Tooghing House	Lectures	Tutorial	Practical
Teaching Hours	4	2	1

2. Course aims:

No.	Aim
6	Design different types of shallow foundation types according to Egyptian code
	of soil mechanics and foundations.

3. Learning Outcomes (ILOs):

C1.1	Apply full range of soil properties, soil stresses, foundation settlement, lateral earth pressure
	and stability of slopes.
C1.2	Select appropriate soil bearing capacity for shallow foundations and foundation types.

No.	Topics	week
1	Soil types - Soil properties - Analysis of soil stresses - Foundations types	1-2
2	Foundation settlement - Soil bearing capacity for shallow foundations	3-6
3	Lateral earth pressure - Shallow foundations design under axial loads	7-9
4	Design of continuous concrete foundations – Slope stability – Design of combined concrete foundations	10-12
5	Design of continuous concrete foundations - Design of neighbor foundations	13
6	Foundations under eccentric loads - Raft foundation	14

5. Teaching and Learning Methods:

No.	Teaching Method
1	Interactive lectures (hybrid learning)
2	Discussion Sessions
3	Flipped classroom
4	Practical

6. Teaching and Learning Methods for Disable Students:

No.	Teaching Method
1	Additional Tutorials
2	Online lectures and assignments

7. Student Assessment:

7.1 Student Assessment Methods:

No.	Assessment Method	ILOs
1	Mid Term Examination	C1.1 – C1.2
2	Semester work (Quizzes, presentation, Portfolio)	C1.1 – C1.2
3	Practical examination	C1.1
4	Oral examination	C1.1 – C1.2
5	Final Term Examination	C1.1 – C1.2

7.2 Assessment Schedule:

No.	Assessment Method	Weeks
1	Mid Term Examination	8
2	Semester work (Quizzes, presentation, Portfolio)	weekly
3	Practical examination	14
4	Oral examination	14
5	Final Term Examination	15

7.3 Weighting of Assessments:

No.	Assessment Method	Weights
1	Mid Term Examination	15%
2	Semester work (Quizzes, presentation, Portfolio)	15%
3	Practical examination	5%
4	Oral examination	5%
5	Final Term Examination	60%
Total		100 %

Course Specifications: Soil mechanics and foundations 1

8. List of References

No.	Reference List
1	Principles of Geotechnical Engineering, 8th SI edition- Braja M. Das & Khaled Sobhan- Cengage Learning (2013)
2	Craig's Soil Mechanics, 8th edition - J. A. Knappett & R. F. Craig – Spon Press (2012)

9. Facilities Required for Teaching and Learning:

No.	Facility
1	Lecture Classroom
2	White Board
3	Data Show System
4	Visualizer
5	Presenter
6	Sound System
7	Soil mechanics and foundation lab

10. Matrix of Knowledge and Skills of the Course:

No ·	Торіс	aim	LO's
1	Soil types - Soil properties - Analysis of soil stresses - Foundations types	6	C1.1 – C1.2
2	Foundation settlement - Soil bearing capacity for shallow foundations	6	C1.1 – C1.2
3	Lateral earth pressure - Shallow foundations design under axial loads	6	C1.1 – C1.2
4	Design of continuous concrete foundations – Slope stability – Design of combined concrete foundations	6	C1.1 – C1.2
5	Design of continuous concrete foundations - Design of neighbor foundations	6	C1.2
6	Foundations under eccentric loads - Raft foundation	6	C1.2

Course Coordinator:

- Ass. Prof. Ayman Ibrahim El-tahrany

- Ass. Prof. Adel Kamel Gabr

Head of Department: Prof. Dr. Ahmed Youssef

Date of Approval: August 2021

Course: Soil mechanics and foundations 1		
Program LOs	Course LOs	
C1: Select appropriate and sustainable technologies for construction of buildings, infrastructures, and water structures; using either numerical techniques or physical measurements and/or testing by applying a full range of civil engineering concepts and techniques of: Structural Analysis and Mechanics, Properties and strength of Materials, Surveying, Soil Mechanics, Hydrology and Hydraulics	C1.1. Apply full range of soil properties, soil stresses, foundation settlement,lateral earth pressure and stability of slopes. C1.2 Select appropriate Soil bearing capacity for shallow foundations and foundation types.	

Course Specifications: Specifications, Quantities & Quality control`

University: Mansoura University
Faculty: Faculty of Engineering
Program: Civil Engineering program

1. Basic Information

Program Title	Civil Engineering program		
Department offering the Program	Structural Engineering Department		
Department Responsible for the Course Structural Engineering Department		nt	
Course Code	ENG 245		
Year/ Level	Third Year-First Semester		
Specialization	Major		
Teaching Hours	Lectures	Tutorial	Practical
Teaching Hours	2	1	0

2. Course aims:

No.	aim	
1 Master a wide range of engineering knowledge, quality control, specification		
	quantity of materials to use them in building construction.	

3. Learning Outcomes (LOs):

A4.1	Utilize contemporary technologies to analysis and calculate quantities of construction materials.		
	Construction materials.		
A4.2	Utilize safety requirements, environmental issues, and risk management principles		
	using technical specifications.		
A5	Practice research techniques to develop tables of quantities and price categories.		
A6	Monitor implementation of engineering projects, taking into consideration special		
	documents and writing contracts.		

No.	Topics	
1	Methods of Quantitates Calculation.	1-2
2	Analysis of the various structural items included in the construction projects - Cost elements.	
3	Tables of quantities and price categories - Inventory methods of quantities of items.	
4	Utilization of inventory tables, abstracts and quantity lists.	10

Course Specifications: Specifications, Quantities & Quality control`

4	Calculation of quantities of items.	11
5	Calculation of quantities of different types of piles.	12
6	General and special documents and writing contracts.	13
7	Technical specifications (writing - elements - specifications).	14

5. Teaching and Learning Methods:

No.	Teaching Method	
1	Interactive lectures (hybrid learning)	
2	Discussion lessons	
3	Flipped classroom	

6. Teaching and Learning Methods 0f Disable Students:

No.	Teaching Method	
1	Additional Tutorials	
2	Online lectures and assignments	

7. Student assessment:

7.1 Student Assessment Methods:

No.	Assessment Method	LOs
1	Mid Term Examination (written)	A4.1, A4.2
2	Semester work (Formative - quizzes – presentation)	A4.2, A5
3	Final Term Examination (written)	A4.1, A4.2, A5, A6

7.2 Assessment Schedule:

No.	Assessment Method	Weeks
1	Mid Term Examination (written)	8
2	Semester work (Formative - quizzes – presentation)	Weekly
3	Final Term Examination (written)	15

7.3 Weighting of Assessments:

No.	Assessment Method	Weights
110.	1 issessment without	VV CISITES

Course Specifications: Specifications, Quantities & Quality control

1	Mid Term Examination (written)	15
2	Semester work (Formative - quizzes – presentation)	15
3	Final Term Examination (written)	70
	Total	100%

8. List of References

No.	Reference List
1	Ken W. Day, James Aldred, Barry Hudson, "Concrete Mix Design, Quality Control
	and Specification ", 4th Edition, 2014.

9. Facilities Required for Teaching and Learning:

No.	Facility
1	Lecture Classroom
2	Lab Facilities
3	White Board
4	Data Show System
5	Visualizer
6	Presenter
7	Sound System

10. Matrix of Knowledge and Skills of the Course:

No.	Торіс	aim	LO's
1	Methods of Quantitates Calculation.	1	A4.1, A5
2	Analysis of the various structural items included in the construction projects - Cost elements.	1	A4.1, A5
3	Tables of quantities and price categories - Inventory methods of quantities of items.	1	A5, A6
4	Utilization of inventory tables, abstracts and quantity lists.	1	A5, A6
5	Calculation of quantities of items.	1	A4.1, A5, A6
6	Calculation of quantities of different types of piles.	1	A4.1, A5, A6
7	General and special documents and writing contracts.	1	A6

Course Specifications: Specifications, Quantities & Quality control`

Course Coordinator: Prof. Dr. Mohamed Elmahdy

Head of Department: Prof. Dr. / Ahmed Mahmoud Yousef Mohamed Salem

Date of Approval:

Course: Specifications, Quanti	ties & Quality control
Program LOs	Course LOs
A.4. Utilize contemporary technologies, codes of practice, and standards, quality guidelines, health and safety requirements, environmental issues, and risk management principles.	A.4.1. Utilize contemporary technologies to analysis and calculate quantities of construction materials. A.4.2. Utilize safety requirements, environmental issues, and risk management principles using technical specifications.
A.5. Practice research techniques and methods of investigation as an inherent part of learning.	A.5. Practice research techniques to develop tables of quantities and price categories.
A.6. Plan, supervise, and monitor implementation of engineering projects, taking into consideration other trades requirements.	A.6. Monitor implementation of engineering projects, taking into consideration special documents and writing contracts.

University: Mansoura University
Faculty: Faculty of Engineering
Program: Civil Engineering Program

1. Basic Information

Program Title	Civil Engineering Program
Department offering the Program	Structural Engineering Department
Department Responsible for the Course	Structural Engineering Department
Course Code	STE341
Year/ Level	Third Year-Second Semester
Specialization	Major
Authorization data of course specification	

Tooghing Houng	Lectures	Tutorial	Practical
Teaching Hours	4	2	0

2. Course aims:

No.							Aim			
1	Master	a	wide	range	of	steel	structures	engineering	knowledge	and
	techniqu	ies	to use	them in	ste	el stru	ctures proje	cts.		

3. Learning Outcomes (LOs):

B2.1	Achieve an optimum design of Steel structures.
B3.1	Address Type of steel system used in Steel Structures projects and Types of loads.
B3.2	Plan Load Path through different structural elements.
B3.3	Assess Loads and straining actions on steel system.

No.	Topics	week
1	Types of steel structures - Types of loads acting on steel structures - Methods of	1-3
	design of steel structures according to the Egyptian code ECP- Calculation of	
	forces in truss members- Design of steel members under tensile forces	
2	Design of steel members under compressive forces - Design of columns subjected	4-6
	to axial forces- Design of welded connections – Design of bolted connections.	
3	Design of steel beams under static loads	7-9
4	Design of beams carrying cranes	10
5	Design of steel frames (columns)	11
6	Design of steel frames (Rafter)	12
7	Design of column base	13
8	Design of cold formed members.	14

5. Teaching and Learning Methods:

No.	Teaching Method
1	Interactive lectures (hybrid learning)
2	Discussion Sessions
3	Flipped classroom

6. Teaching and Learning Methods for disabled Students:

No.	Teaching Method
1	Additional Tutorials
2	Online lectures and assignments

7. Student Assessment:

7.1 Student Assessment Methods:

No.	Assessment Method	LOs
1	Mid Term Examination	B2.1, B3.1, B3.2
2	Semester work (Quizzes, presentation, Portfolio)	B2.1, B3.3
3	Oral Examination	B3.1, B3.2
4	Final Term Examination	B2.1, B3.1, B3.2, B3.3

7.2 Assessment Schedule:

No.	Assessment Method	Weeks
1	Mid Term Examination	8
2	Semester work (Quizzes, presentation, Portfolio)	weekly
3	Oral Examination	14
4	Final Term Examination	15

7.3 Weighting of Assessments:

No.	Assessment Method	Weights
1	Mid Term Examination	15%
2	Semester work (Quizzes, presentation, Portfolio)	15%
3	Oral Examination	10%
4	Final Term Examination	60%
Total		100 %

8. List of References

No.	Reference List	
	Egyptian Code of Practice for Steel Construction (Load and Resistance Factor Design	
1	(LRFD) (205) Ministerial Decree No. 359-2007, Ministry of Housing, Utilities and Urban	
	Development.	
2	Egyptian Code of Practice for Steel Construction and Bridges (ASD) Code No. ECP 205-	
	2001, Edit 2009. Ministry of Housing, Utilities and Urban Development.	
3	Alan Williams. "Steel Structures Design (ASD/LRFD)". USA: International Code Council,	
	2011.	

9. Facilities Required for Teaching and Learning:

No.	Facility
1	Lecture Classroom
2	White Board
3	Data Show System
4	Visualizer
5	Presenter
6	Sound System

10. Matrix of Knowledge and Skills of the Course:

No ·	Торіс	aim	LO's
	Types of steel structures - Types of loads		
	acting on steel structures - Methods of design		
1	of steel structures according to the Egyptian	1	B3.1
1	code ECP- Calculation of forces in truss	1	D3. I
	members- Design of steel members under		
	tensile forces		
2	Design of steel members under compressive	1	B2.1
	forces - Design of columns subjected to axial		
2	forces- Design of welded connections -		
	Design of bolted connections.		
3	Design of steel beams under static loads	1	B2.1, B3.2
4	Design of beams carrying cranes	1	B2.1, B3.3
5	Design of steel frames (columns)	1	B2.1, B3.2
6	Design of steel frames (Rafter)	1	B2.1, B3.3
7	Design of column base	1	B2.1, B3.2
8	Design of cold formed members.	1	B2.1

Course Coordinator:

Head of Department: Prof. Dr.

Date of Approval: December 2019

Course: Steel constructions 1		
Program LOs	Course LOs	
B3. Plan and manage construction processes; address	B3.1. Address Type of steel system used	
construction defects, instability, and quality issues;	in Steel Structures projects and Types of	
maintain safety measures in construction and materials;	loads.	
and assess environmental impacts of projects.		
	B3.2. Plan Load Path through different	
	structural elements.	
	D2 2 Assess I sade and straining actions	
	B3.3. Assess Loads and straining actions on steel system.	
B2. Achieve an optimum design of Reinforced	B2.1. Achieve an optimum design of Steel	
Concrete and Steel Structures, Foundations and	structures.	
	Sit dectares.	
Earth Retaining Structures; and at least three of the		
following civil engineering topics: Transportation		
and Traffic, Roadways and Airports, Railways,		
Sanitary Works, Irrigation, Water Resources and		
Harbors; or any other emerging field relevant to the		
discipline.		