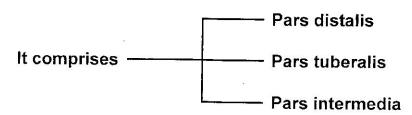
Market 94 Jahr. L

PITUITARY GLAND

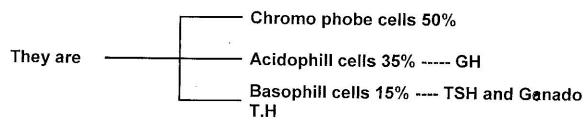
Anatomy:

- It is a small gland w wt. about ½ gm in normal adults
- Occupies the sella turcica.
- And separated from the intracranial fossa by the diaphragma sellae $\,\ddot{w}\,$ is pierced by i pit. Stalk

Relations:


- 1. Superiorly : ightarrow optic chiasma and supra-optic hypothalamic nuclei .
- 2. Laterally : →
- cavernous sinus.
- internal carotid arteries
- uncinate gyrus of I temporal lobe
- 3. Posteriorly : \rightarrow Inter-peduncular fossa

Divisions and Histology:

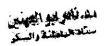

Developmentally and physiologically the pit. is Subdivided into:

2 parts:

1. Adenohypophysis = Ant. lobe of i pituitary

It contains 3 types of cells $\ddot{\mathbf{w}}$ has been termed according to their staining character :

2. Neurohypophysis = Post lobe of i pituitary.


It comprises \rightarrow infundibulum and infundibular stalk.

It contains specialized secretory never cells known as pitucytes.

Physiology:

(1) Adenohypophysis

This secretes certain trophic hormones w stimulate other Endocrine glands , thus acting as the maistro of the endocrine orchestra .

The main trophic hormones are:

- (I) Somatotrophic hormone (Growth hormone = G.H.):
 - This stimulate growth of the skin, muscles, viscera and bone.
 - It also has a diabetogenic effect by antagonizing the hexokinase enzyme.
 - It may have a parathyrotrophic action.

(II)Thyrotrophic hormone (<u>Thyroid Stimulating hormone</u> = TSH) It has 2 actions on the thyroid :

- (A) Growth action: stimulating i growth & vascularity of i thyroid.
- (B) Metabolic action: increasing the picking up of the iodide by the thyroid and stimulate the formation of T4,T3.

(III) Adenocorticotrophic hormone (= ACTH):

- This stimulates the zona fasciculata and zona reticularis of the suprarenal cortex \rightarrow stimulate the formation of glucorticoids adrenal sex hormones.
 - It has minimal effect on the secretion of aldosterone by the zona glomerulosa.

(IV) Ganadotrophic hormones:

- (A) Follicular stimulating hormone (= $\underline{F.S.H}$) = Serum G.T stimulate the growth & maturity of i graffian follicle in Q maturity of the spermatozoa in Q.
- (B) Luteinising hormone (= $\underline{L.H}$) = Chorionic G.T stimulate the maturity maintenance of corpus luteum in $\mathcal Q$ & interstitial cells of i testicles in $\mathcal S$
- (C) Luteotrophic hormone (L.T.H) = Prolactine stimulate the development of the duct system of the breast & its preparation for milk production .

(V) Melanocyte stimulating hormone (M.S.H):

Secreted by i pars intermedia \rightarrow stimulate the pigment of i skin .

(VI) Exophthalmos producing substance (<u>E.P.S</u>)

→ Malignant exophthalmos .

• Relation of adnohypophysis to other endocrine gland :-

There are <u>feedback</u> <u>mechanisms</u> between the pituitary and target endocrine gland; i.e; when i hormone secreted by one of i target endocrine

الد. فاعل غيو الجهيس ستاد عمدالت والسك

glands decreased in the blood , the pit. Increases the corresponding trophic hormone and vice versa .

- Relation () the hypothalamus & BL. Supply of i pit. :
- Arterial BL. Supply :- Superior and inferior hypophyseal a .
- Venous drainage :- There is a portal type of i venous drainage of the pit .

The afferent hypophyseal veins originate from the region of The hypothalamus & infondibular stalk and pass to pit. where they break down into smaller banches then to a capillary network from $\ddot{\mathbf{w}}$ new veins arise and collect to from $\ddot{\mathbf{w}}$ efferent hypophyseal veins \rightarrow into $\ddot{\mathbf{w}}$ into $\ddot{\mathbf{w}}$ into $\ddot{\mathbf{w}}$ cavernous and inter-cavernous sinuses).

By this distribution of venous drainage the relation between the physiology of the hypothalamus & pit. could be explained :

The hypothalamus secretes certain releasing hormones \rightarrow circulate in the hypophyseal portal veins to the pit. \rightarrow stimulate the release of the corresponding trophic hormone \rightarrow pass through the efferent hypophyseal veins to the general circulation \rightarrow act on i target endocrine glands .

(2) Neurohypophysis

2 Hormones:

(I) Vasopressin (Pitressin or ADH):

Regulation of reabsorbption of H2O by the distal convoluted and collecting tubule of nephrons $\rightarrow \uparrow$ permeability of cells to H2O \rightarrow so, H2O can pass freely from the hypotonic tubular fluid to the hypertonic interstitial tissue of the kidney .

If i hormone is $\downarrow \to$ H2O can't diffuse \to excess and hypotonic urine .

(II) Oxytocin (= pitocin):

Action:

- 1. Stimulate the contraction of the gravid uterus.
- 2. Stimulate the ejaculation of milk from fully mature Breast.
- 3. Mild anti-diuretic effect.
- 4. +++++ vascular spasm.

Diseases of the Pit. Gland

Hyper-Function of adenohypophysis:

Possible C/P:

- 1. Acromegally.
- 2. Giagantism.
- 3. Cushing syndrome (pit. cushing)
- 4. Thyroid acropathy.

- 5. Hyper-pigmentation of skin.
- 6. Malignant exophthalmos.

Acromegally

<u>AE</u>: Results from † function of " acidophil cell " of adenohypophysis occurring after closure of epiphysis of long bones; i,e; above 20 years .

Due to:

- 1. Simple hyperplasia of the acidophilic cells .
- 2. acidophilic adenoma w is usually a small tumor rarely grows rapidly → erodes the sella turcica.
- 3. acidopil adeno-carcinoma (very rare) .

Physiologic disturbances:

The \uparrow functioning acidophil cells $\rightarrow \uparrow$ Growth hormone \rightarrow stimulate growth of skin,ms, viscera and bones (\(\vec{w}\) can't grow from epiphysis e.g.; skull, mandible and ribs). Bones can not grow in length because of closure of their epiphysis but they grow in breadth as a result of new sub periosteal bone formation .

In late stages the pit. gland becomes exhorted → Hypofunction

<u>C/P</u>:

- Onset : Gradual
- Course:- In the majority of cases the disease runs slowly Progressive course, in few pts the disease runs a so rapid course that is \to malignant acromegally

(A)Endocrinal chics:

1. Facies:

- Big skull.
- Big skull prominences and bones.
- Prominent Supra-orbital ridges .
- Wrinkled fare head .
- Big nose . Ear pinna , lips .
- Big wrinkled tongue.
- Prognathic low jaw é wide apart teeth .

2. <u>Hands</u>:

- Spade like hands .
- Big hands with thick and broad fingers é Terminal broad phalanges .

3. Skin:

- Overgrown , wrinkled especially in Forehead \rightarrow folds .
- Hair \rightarrow long. Thick .
- Cutaneous hyper-pigmintation ightarrow common .

4. Muscular:

- Early: True hypertrophy of ms & ↑ strength.
- Late : (when ↓ pit.) → muscular weakness and hypotonia.

5. Skeletal:

- Skull: Big with thick ridge & prominent bones
- Mandible: Prognathic
- Long bones: Broad and thick.
- Thoracic cage: 1ed with broad ribs.
- Multiple exostoes.
- Hypertrophic osteo-arthropathy.

6. Visceral:

- Cardiomegally, hepatomegally and splenomegally may not be detected clinically due to ↑ed body size .

7. Gonadal:

- Early : ↑ Lipido and potency
- Late: Pit. exhaustion
 - $\delta \rightarrow \downarrow$ Lipido and potency
 - **♀** → Amenorrhea

Both Show fall of axillary & pubic hair .

8. Possible associations:

- ↑ B.P - D.I

- D.M
- polyneuropathy: due to hyperplasia of the C.T. of nerves pressing on nerve bundles.
- spontaneous lactation in ♀.
- Goiter.

(B)Non Endocrinal:

If acromegally is due to a Pit. tumor : certain pressure, nervous clinical picture :

- (1) Bitemporal <u>headache</u>:
 - Due to expansion of the sella. The headache is relieved when the tumor gets out of sella to reappear when intra-cranial pressure increases.
- (2) Bitemporal hemianopia:
 - Due to pressure on optic chiasma .
- (3) Cavernous sinus syndrome:
 - Due to pressure on the cavernous sinus :
 - Exophthalmos.
 - Chemosis of conjunctiva.
 - Ophthalmoplagia .
 - Oedema of eyelids .
 - Papillidema.

- Loss of corneal reflex.
- (4) Pressure on uncinate gyri → uncinate fits
- (5) Pressure on hypothalamic nuclei →hypothalamic syndrome = polyphagia + polyurea + somnolence
- (6) Pressure on cerebral peduncles → pyramidal tract lesion.

Investigation:

- (1) X- ray of skull:
 - Big skull.
 - Thick skull bones .
 - Enlarged frontal air sinuses.
 - Ballooning of sella turcica in cases of tumors.
- (2) X- ray of hand:
 - Thick phalangeal bones with tufting of their terminal end (Mushroom-like expansion).
- (3) B.M.R

Early ↑ late ↓

(4) RBCs

Early ↑ late ↓

(5) 17-ketosteroids in urine Early ↑ late ↓

(6) serum Ph +++

Early ↑ late ↓

Treatment:

- a. Medical:
 - Bromocriptine, somatostatin
 - Parlodal, Dopagen 2-5 m.g. (1/2 X 2 then gradually ↑ up to 4 tabs/day)
- b. Irradiation: 200 R/SIT / days for 5 days.
 - indication:
 - Failure of medical treatment.
 - No field defects
 - Unfit for surgery
- c. Surgery: hypophesectomy in the tumor é start of vision changes.

Gigantism

AE:

Hyperactivity of acidophil cells of adenohypophysis occurring before closure of epiphysis of long bones.

Due to:

1. Simple hyperplasia of acidophil cells

- 2. Acidophil adenoma
- 3. Acidophil Adenocarcinoma

❖ Pathogenesis:

Excess growth hormone \rightarrow over growth of all body tissue including long bones.

❖ C/P :

Onset: Gradual

Course: rapidly progressive, most pts die before age of 20 years.

Features (chics)

a. Gigantism:

Proportionate, The Span is equal to the height.

Head ↔ Pelvis = Pelvis ↔ Feet.

b. Hands:

Big with long tapering fingers.

c. Other C/P of acromegally .

D.D. :

- 1. Familial gigantism:
 - Body measurements one less
 - No other changes
 - +ve family history.
- 2. Hypogonadal Gigantism:
 - ❖ Sex hormone help closure of epiphysis, so if they are deficient → closure delayed → Gigantism
 - (A) Body measurement , disproportionate , very long limbs
 The span > height

 $\textbf{Head} \leftrightarrow \textbf{pelvis} < \textbf{pelvis} \leftrightarrow \textbf{feat}$

- (B) Other C/P of ↓ gonadism :
 - ↓ Lipido.
 - Impotonce.
 - loss of temporal recession.
 - Pallor.
 - Gynaecomastia .
 - General asthenia .
 - Loss of hair in upper lip & chin.

Treatment:

- 1- Irradiation.
- 2- Hypophysectomy.
- 3- Androgens.

Hypofunction of Pit. Gland

- → Hypofunction of adenohypophysis
- (1) <u>Levi Iorrain syndrome</u> (Genetic developmental defect).
- (2) Simmond's disease (Acquired).
- (3) Selective hypo-pitutarism:
 - (A) Pit. myxoedema → Sheehan's syndrome
 - (B) Pit. hypocorticolism
 - → Hypofunction of Neurehypophysis : → D.I

Levi – Lorrain Syndrome

AE:

Congenital pan-hypo-pit. Due to genetic defect in the development of the pit. gland .

- C/P : chics :
 - Facies: small facial features with small eye slits nose, ear pinna, lips and tongue.
 - Hands: small with thin tapering fingers.
 - o Infantilism:
 - (I) Dwarfism →proportionate.
 - (II) Hypogonadism \rightarrow appear only at puberty :
 - Small testis ± cryptochisism .
 - Small penis .
 - No scrotal pigment .
 - If \hookrightarrow 1ry amenorrhea .
 - O Skin: Thin, silky.
 - Microsplanchiae .
 - Voice children tone.
 - O High mentality and the child is active.

<u>D.D.</u>: of Infantilism [(1) Endocrinal, (2) Hypothalamic, (3) Genetic, (4) Systemic diseases]

(I) Endocrinal:

(A) Juvenile D.M.:

C/P & inv : chic

Section of the second

Very liable to diabetognic icotosis.

(B) Cretinism:

- 1. Disproportionate
- 2. Facial:
 - Apathetic
 - · Puffy eyelids
 - · big protruded tongue
 - · Depressed nasal bridge
 - · Big thick lips
- 3. Hand: stumpy with dorsal pads and short fingers
- 4. Skin : Thick coarse , rough ♀ Alopecia is common
- 5. Mentality \

(II) Hypothalamic causes:

■ Froehlich's Syndrome :

AE: Hypothalamic lesions:

- (1) Encephalitis
- (2) Craniopharyngioma or meningioma
- (3) Idiopathic

C/P:

- (1) Dwarfism
- (2) Hypogonadism
- (3) Obesity ♀ type
- (4) Skin: thin, silky
- (5) Hands : small with tapering fingers
- (6) Mentality well but childish psychosis
- (7) Hypothalamic symptoms
 Polyuria, polyphagia & somndence

(III) Genetic causes:

(1) Turner's syndrome:

- Dwarfism
- Hypogonadism with 1ry amenorrhea
- Atrophy of the breast
- Webbing of the neck
- · Cubitous vulgus
- Coarctation of aorta
- ♀ with 45 chromosome (44 + XO)

(2) Laurence Moon - Biedle Syndrome:

- Dwarfism
- Hypogonadism
- Polydactyly
- · Retinitis pigmentosa
- Obesity
- 47 chromosomes (44+ xxy)
 Trisomy = one of the auto-chromosomes is 3 instead of 2.

(3) Down Syndrome (Mongol):

- 47 Chromosome (usually Trisomy 21)
- dowarfism
- hypogonadism
- bradycephaly
- · upwards slanting of the eyes
- · Deep crease across the palm
- liable to → Cooley's anemia

(IV) Systemic diseases:

- (1) Malnutrition.
- (2) C.V.S: * Congenital cyanotic heart diseases .
 - * Heart failure in young children .
- (3) Chest : Cong. Cystic lungs .
- (4) G.I.T: L.C.F. in early age, steatorrhea, parasites .
- (5) Renal: * Cong polycystic icidney.
 - * Cong tubular defeats .
 - * Chronic renal failure in children .

Treatment Of Levi - Lorrain Infantilism:

- (1) Pituitary hormones guarded prognosis
- (2) Chorionic Gonadotrophins (C.G.T) in cryptorchidism for 6 weeks \to If failed \to surgery .
- (3) Androgens : Best Stimulus for growth
 - -ve overdose \rightarrow premature closure of epiphysis .

J. C. Lindson

Simmond's disease

AE:

- (1) Autoimmune \rightarrow atrophy
- (2) Traumatic as fracture base
- (3) Inflammation: basal meningitis, encephalitis
- (4) Granulomtus: T.B., Sarcoidosis
- (5) Neoplasm; As:
 - B. chromophobe adenoma
 - M. supra-sellar meningioma
 - Chiasmal neuroma
 - Craniopharyngioma

Pathogonesis: [Panhypopitutarism]

C/P:

- 1. Due to ↓ <u>G.H</u>
 - Simmond's Cachexia
 - Muscular weakness, flabbiness
- 2. ↓ Gonadotrophic hormones :
 - Both ♀ ♂
 - \downarrow lipido and loss of pubic & maxillary hair
 - $\circlearrowleft \to \mathsf{loss}$ of beard and moustache, impotence & Testicular atrophy .
 - ♀ → breast atrophy
- 3. \downarrow <u>TSH</u> \rightarrow Thyroid myxedema but the skin is not so thick
- 4. ↓ <u>A.C.T.H.</u> :
 - ↓ BL. Glucose level
 - ↓ BI . Pressure .
- 5. $\downarrow M.S.H \rightarrow Pallor$ and generalized depigmentation

N.B.: Pallor in Summand's : due to :

- 1. Generalized depigmentation
- 2. Anemia.
- 3. Myxedema

Investigation:

- 1. X-ray skull : exclude brain tumors.
- 2. BMR.
- 3. 17-ketosteroids in urine.

4. F.B.S.

Treatment:

- 1. Treatment of the cause
- 2. Replacement thyroid extract
- 3. cortisone 1-2 eq/d

Selective Hypopitutarism

(A) Pit. Myxoedema = Sheehan's syndrome

• AE:

Mostly post partum Hge .

- C/P: myxoedema But
 - 1. Pubic and axillary hair absent
 - 2. Skin not too thick
 - 3. Cholesterol not high
 - 4. BMR & RAI uptake \downarrow but They improve by T.S.H.

(B) Pit . Hypocorticolism :

- <u>C/P</u>: Addison But
 - 1. Skin not pigmented
 - 2. Pubic and axillary hair absent
 - 3. Esinophils \uparrow but \downarrow by ACTH .
 - 4. 17 ketosteroids in urine ↓ but ↑ by ACTH
- Treatment :

Replacement therapy (thyroid & cortisone)

D.I. (↓ A.D.H)

AE:

- 1. Idiopathic in young
- 2. Traumatic
- 3. Inflam.:
 - Basal meningitis
 - Encephalitis
- 4. Granulomatus:
 - . T.B. \$ Sarcoidosis
 - Xanthomatosis
 - Hand Schaller Christian Syndrome
- 5. Tumors: (Bengin & Malignant)

- Chromophobe adenoma
- Craniopharyngioma
- Meningioma (supra-sellar)
- Chiasmal neuroma

Pathogenesis:

Cells of distal convoluted tubules (DCT) and collecting tubules \rightarrow impermeable to H2O.

C/P:

- Polyurea 5-30L/d
- Thirst +++
- Polydepsia \rightarrow G.I.T troubles .
- Psychosis & insomnia.
- Dehyderation.

Investigation:

- 1. Urine:
 - * Volume : 5-30 L/d
- * Aspect : clear
- * S.G : 1000-1004
- * Colour : H₂O colour
- 2. X-ray skull to exclude trauma or tumor .
- 3. hypertonic saline test:

H₂O deprivation, 24 hours

In 45 minutes

I.V. Saline

0.25 cc/k.g. B.W / minute in 45 min.

- In normal person $\rightarrow \uparrow$ BL . osmolarity
- ightarrow Stimulation of osmo-receptors of hypothalamus
- $ightarrow \uparrow$ Pitressin releasing hormone ightarrow Pitressin ightarrow Oliguria
- In D.I → No response

D.D.:

D.D. of Polyurea: physiological, pathological and K loosing Diuretics

1- <u>Physiological</u> :

- winter.
- ↑ H2O.
- ↑ tea, coffee, beer & cola.
- psychogenic polydepsia.

2- Pathological:

A- Renal causes :

- Ch. R.F.
- Diuretic stage of A.R.F.

- Nephrogenic D.I.
- Congenital tubular defect in reabsorption of $\rm H_2O$ " one cause of Nephrogenic D.I. "
- Intermittent Hydronephrosis.

B- Endocrinal causes:

- D.M.

- ↑ Pit.

- D.I.

- ↑ Thyroid.

- ↑ Parathyroid.

Corticosteroids [conn's synd. , cushing synd. , pheochromocytoma]

D.I	NDI	Psy. Polydepsid
1. Hypertonic saline	-ve	+ve
2. Ptressine test +ve	-ve	+ve
3. Associations	Other tubular defect	Psychosis

Treatment of D.I.:

- 1. ttt of The cause.
- 2. Replacement therapy:
 - Pitressin tannate : 5u l.M./48 hs (or spary or drops).
 - Dessicated pituitary : 50 mg snuff/d.

THYROID GLAND

Physiology:

- The Thyroid gland forms T3 &T4 under influence of TSH of the anterior Pituitary.
- This TSH → ↑ Size & Vascularity of the gland + ↑ uptake of iodides → ↑rate of synthesis of T4 & T3

• Steps of formation of Thyroid hormones:

- 1. Thyroid Picks up inorganic iodides from the Plasma
- 2. Inorganic iodides → active iodine
- 3. 2 molecules of this active iodine + Tyrosine→ DIT
- 4. 2 (DIT) → T4
- 5. (Thyroxin + globulin) stored inside the thyroid acini as thyroglobulin when needed , this thyroglobulin break \to T4
- 6. This T4:
 - blood

Jest Line Bride

• some [T4 (- i) → T3 → Blood]

Diseases of the Thyroid Gland

- I) Pathological Classification:
 - 1. Enlarged ducts hypertrophy or ↑ normal tissues :-
 - Non toxic : (simple nodular)
 - · toxic.
 - · hypothyroid goiter.
 - 2. ↑ due to infiltration by abnormal tissues:-
 - thyroiditis (acute, chronic)
 - tumors (B,M)
- II) Functional Classification:
 - Hyperthyroidism
 - Hypothyroidism

Hyperthyroidism

Types:

- 1. Primary: occurs on top of a previously normal thyroid.
- 2. Secondary: on top of nodular goiter or less occasionally thyroid adenoma

1ry Hyperthyroidism

= 1ry thyrotoxicosis = Grave's dis.

AE:

- Predisposing factors :
 - 1. Age: commonest 20-40 years.
 - 2. Sex : ♀ > ∂.
 - 3. Emotional & psychic disturbances are important predisposing factors.
 - The disease is more common in irritable people who are under continuous emotional stress.
 - Occasionally thyrotoxicosis is ppt by sudden major psychic troubles
 - 4. Infections: some cases may occur after streptococcal infection. Rh. fever, enterica or other infections.

Pathogenesis: Theories:

- 1) ↑ Production of TSH: it is supposed that prolonged emotional stress → stimulate the hypothalamus →↑ thyrotrophin releasing hormone w circulate in the Pit. portal system of veins to the adenohypophysis → stimulate the Pit. cells →↑ secretion of thyrotrophic hormone →↑ size of thyroid gland → T4, T3.
- 2) ↑ sensitivity of the thyroid to thyrotrophic hormone.
- 3) Disturbed feed-back mechanism () pit. & thyroid → the pit. continues to secrete TSH Although T4 & T3 are high in i blood.

C/P:

- a) Onset: usually gradual
- b) Course : chronic progressive course with frequent acute exacerbations.
- c) Occasionally the disease shows spontaneous recovery as a result of exhaustion of thyroid cells >

Symptoms:

a) General:

- 1) Severe asthenia.
- 2) Rapid lass of wt.
- 3) Intolerance to heat & on the contrary the pt likes winter time.
- 4) Excessive sweating.
- 5) Swelling in the thyroid region with attacks of suffocation if the swelling is big or has a retrosternal extension.

b) Nervous:

- a. Irritability and anxiety: pts are characteristically started by any sudden stimulus.
- b. Tremors of the hands & tongue (fine)
- c. Myasthenia .
- d. Weakness & wasting of some of the muscles of the L.L.s mainly the Quadriceps due to thyroid myopathy.

c) <u>C.V.S.</u>:

- a. Exertional dyspnea.
- b. palpitation.
- c. rarely angina.

d) <u>G.I.T.</u>:

- a. † appetite
- b. Polyphagia & inspite of that, still ↓↓ wt.
- c. Tendency to diarrhea.

e) <u>Urinary</u>:

A STATE OF THE PARTY OF THE PAR

Polyuria due to:

- a. Excess formation of metabolic H2O.
- b. ↑ Renal B. flow.
- c. ↑ Fluid intake as apart of polyphagia.

f) Gonadal:

- a. ↑ lipido, in the early stages.
- b. in females: menstrual disturbances; started by polymenorrhea & menorrhagia and ended By amenorrhea.

g) Skeletal:

Osteoporosis of bones → Generalized bone aches.

Signs:

A) General:

- 1) Wt loss.
- 2) ↑sweating.
- 3) Goiter:
 - i. the gland is usually moderately enlarged flesh in consistency, smooth surface moves freely with deglutition.
 - ii. The overlying skin shows dilated veins, pulsations , thrills and audible bruits due to ↑vascularity .

4) Skin:

- i. thin, warm & sweating.
- ii. Palms are warm & Sweaty contrary to psycho neurotics in whom the hands are cold and sweating.
- iii. Hyperpigmentation if present never affect mucous membrane (as Addison)

5) Eye signs:

Exophthalmos:

- A) <u>Benign</u>: probably related to ↑TSH, improve by ttt of thyroticosis and usually mild.
- B) <u>Malignant</u>: proptosis +++, oedema of eyelids chemosis in conjunctiva
 - o usually related to ↑ in exophthalmos producing substance w :
 - 1- ↑ retrobulbar fat .
 - 2- ↑ retrobulbar mucopolysaccharides .
 - 3- weakness of ocular muscles.

this type ↑ed after anti-thyroid therapy.

1. Von Graefe's sign :

Lagging of the upper eye lib when the patient is asked to look gradually down \rightarrow rim of the sclera exposed .

الم. فالتوليج الصيابية سند المناصلة والبيكو

2. Joffroy's sign:

Lack of corrugation of the forehead when looking up

3. Mobius sign:

Lack of convergence when looking to a near object

4. Stellwag's sign :

Starring and gazing look + ↓ blinking

5. Dalrymple's sign: Advanced von Graefe's

when pt looks straight forwards \rightarrow a rim of sclera can be seen above the cornea

6. Ophthalmoplegia:

With malignant exophthalmos.

B) Nervous signs:

- 1. Irritability and anxiety.
- 2. Fine tremors of fingers & tongue w appear more by asking I pt to out stretch I hands & abduct I finger.
- 3. Myasthenia gravis like picture : with rapid fatigability of ms but é out good response to prostigrmine .
- 4. My apathy: acute or chronic, atrophic type of myopothy, mainly affect quadric cops ocular ms

C) C.V.S.:

- 1. pulse: rate : ↑ even during sleep
 - rhythm : A.F. or flutter
 - ch' : water hummer pulse.

2. Bl. pressure:

- $\uparrow\uparrow\uparrow$ systolic, \downarrow diastolic $\rightarrow\uparrow$ pulse pressure
- 3. heart:
- dilatation Of both ventricles
- ↑ed HT. sounds.
- haemic murmurs. Commonly systolic over P.M. areas.

Investigations:

- 1. Sleeping pulse rate.
- 2. BMR.
 - * normal range : +15 to -15
 - * in thyrotoxicosis, it is high.
 - * BMR is not accurate may be ↑↑ in:
 - non basal conditions.

ing liver be

- pregnancy.
- parkinsonism.
- H.F.
- blood diseases as polycythemia & leukemia.
- 3. P.B.I (protein bound iodine):
 - normally: 4-8 mg/ 10cc.
 - in thyrotoxicosis →↑↑
- 4. T3, T4, TSH.
- 5. I131 (radioactive iodine uptake) ↑
- 6. serum cholesterol: ↓
- 7. OGTC: lag curve.

2ry Thyrotoxicosis

As primary except in:

- 1. Age → older
- 2. onset → more gradual.
- 3. gland \rightarrow show nodular goiter or adenoma.
- 4. C.V.S manif. → more marked
- 5. nervous manif. → less marked
- 6. exophthalmos → mild
- 7. response to med. $ttt \rightarrow not good$.

Treatment of hyperthyroidism:

(A) Medical ttt:

- Indications:
 - 1. all cases of 1ry hyperthyroidism should receive a trial for medical ttt.
 - 2. in 2nd type: medical ttt is given as pre-operative preparation.
 - 3. refusal of operation.
 - 4. general contraindications for operation.

- Contraindications :

Retrosternal goiter: as the goiter may swell under med $\mathsf{tt} \to \mathsf{mediastinal}$ syndrome.

- Lines of med. ttt:

- → (1) mental & physical <u>rest</u> : esp. in sever cases.
- \rightarrow (2) Diet :
 - * high protein diet to compensate for the ↑ed protein catabolism.

- * Excess vit. Esp. A,B,C.
- → (3) sedation: using tranquilizers e.g. diazepam derivatives.
- → (4) Anti-thyroid drugs:
 - (a) lodine & iodides: ...
 - Preparations: lugol's iodine= 5% l2 in Kl 10%
 - Action : antagonize TSH → ↓ size,↑ fibrosis, ↓ vascularity
 - this action can not be maintained for more than 3 weeks, so it's used as preoperative only.
 - Dose: 5 drops t.d.s, ↑ ed gradually to 15 drops t.d.s
 - Toxicity:
 - 1. ↑↑ salivation.
 - 2. parotid swelling.
 - 3. Skin rash.

(b) thiouracil derivatives:

- Preparation:
 - CH3 thiouracil
 - o C2H5 (propel) thiouracil.
- *Action* : inhibits the enzymes necessary for [$12 \leftrightarrow tyrosine$] & [$T2 \leftrightarrow T4$] $\rightarrow \downarrow T4$ & $T3 \rightarrow \uparrow exophthalmos$.
- Dose: c2Hs thiouracil: 200mg t.d.s until BMR become normal, then maintenance dose 100m.g./d.
- Side effects:
 - 1. skin rash.
 - 2. | WBcs.
 - 3. ↓ agranulocytosis → vit. B6 20mg/d.
 - 4. hepatotoxicity.
 - 5. nephrotoxicity.

(c) Mercazol derivatives: ...

- *Preparation* : mercazole, neomercazole (immedazol carbinazol).
- Action & toxicity: as thiouracil.
- Dose: 1/10 of propyl thiouracil.

(B)Surgical ttt:

* Indications:

- 1. all cases of 2ry thyrotoxicosis.
- 2. failure of med. ttt.
- 3. recurrence of symptoms after each time of med ttt.

Sept Time The

- 4. retrosternal goiter.
- 5. cosmotic.

* Premedication:

Medical ttt until BMR drops as low as possible then stop thiouracil or mercazole & give lugol's iodine for 2 weeks.

* Operation:

Subtotal thyroidectiony.

(C)Radioactive lodine:

- * indications:
 - 1. elderly thyrotoxic patients (>50y).
 - 2. recurrence after surgery.
 - 3. thyrotoxic H.F.
- * contraindications:
 - 1. young age.
 - 2. very big goiter.
 - 3. pregnancy & lactation.
 - 4. retrosternal goiter.
- * Dose: 180u curie/g.m. of thyroid.
- * Side effects:
 - 1. Myxedema.
 - 2. B.M. depression.
 - 3. malignant transformation.
 - 4. swelling of the gland \rightarrow tracheal compression.

Treatment of malignant exophthalmos:

Medical:

- 1. salt restriction diuretics.
- 2. anti-thyroid therapy + small dose of thyroid extract (L. Thyroxine 0.1 mg)

Surgical:

orbital decompression by removal of a part of the roof or lateral wall of the orbit.

Thyroid Crisis

Mostly during operation or immediately after it.

Predisposing factors:

1. inadequate preparation.

THE STATE OF THE S

- 2. infection.
- 3. +++ emotions.

C/P:

Thyrotoxicosis +

- 1. hyperpyrexia (>40 ∘c).
- 2. +++ sweating.
- 3. abd. Pain & diarrhea.
- 4. stuper \rightarrow coma.

Treatment:

- 1. Neomercazope 6- 8 tab/8h (tab = 5m.g.) naso-gastric tube.
- 2. Na iodide: 1-2 g.m./ 24 hrs I.V. infusion.
- 3. inderal I.V. infusion 1-10 mg/min. in ICU under monitoring.
- 4. hydrocortisone 100m.g./ 6h then after improvement gradual ↓ doses then change to tab.
- 5. Symptomatic:
 - (A) fluids & electrolytes: especially glucose for ttt of hypoglycemia.
 - (B) Hyperpyrexia.
 - (C) H.F. & A.F.
 - (D) Sedation & O2.

Hypothyrodism:

Causes:

- 1. congenital absence.
- 2. lingual thyroid.
- 3. operative removal.
- 4. thyroiditis.
- 5. destruction by x-ray, radio-active I2 or radium.
- 6. exhaustion after hyperactivity.

Clinical types:

- 1- Cretinism.
- 2- Adult myxoedema.
- 3- Juvenile myxoedema.
- 4- Hypopituitary myxoedema.

Jan Contract

Cretinism

Etiology:

- 1. congenital absence of thyroid gl. ((thyroid cretinism)).
- 2. congenial enzymatic defect in the formation of T4 ((metabolic cretinism)).
- 3. endemic goiter ((endemic cretinism)).

C/P:

- 1- Charachterestic facial features:
 - a. dull apathetic look.
 - b. Depressed bridge of nose.
 - c. Wide apart eyes.
 - d. Big thick lips.
 - e. Big protruded tongue.
- 2- Dwarfism:

disproportionate dwarfism → span < height

 \rightarrow lower $\frac{1}{2}$ < upper $\frac{1}{2}$

3- Retarded steps of development :

Late at sitting, standing, walking, talking, teething.

- 4- Cutaneous:
 - a. thick, cool, pale rough skin
 - b. hairs \rightarrow scalp alopecia ++
- 5- Muscular:
 - a. muscular weakness flabbiness.
 - b. Pot belly abdomen: due to weakness of abd. ms.
- 6- **G.I.T.**:
- constipation +++.
- 7- Nervous system:
 - a. idiots = mental backward.
 - b. Quiets = abnormal.
- 8- <u>C.V.S.</u>:
 - 1 heart rate
- 9- Gonadal:
 - manifested when reach purity $\to \downarrow \downarrow \downarrow \downarrow$.

June 18 18 Jan 1

Investigations:

- 1. T3, T4, T.S.H. → ↓
- 2. Protein bound iodine \rightarrow < 4 ugm%.
- 3. radioactive iodine uptake : very low except in type due to cong. Enzymatic block in w there is increased iodine uptake.

Treatment:

Thyroid extract, started by $\frac{1}{8}$ grains t.d.s and gradually increased to $\frac{1}{2}$ grains t.d.s.

Adult myxoedema

Aetiology:

- (1) primary myxoedema:
 - occurs in ♀ without an apparent cause.
 - Age 35-50 years.
 - Probably caused by an auto-immune reaction because antibodies against thyroid could be deleted in the blood.
- (2) endemic goiter
- (3) iatrogenic \rightarrow over ttt of thyrotoxicosis e.g. anti-thyroid drugs, thyroidectomy or the use of big doses of radio-active iodine .
- (4) thyroiditis \rightarrow specially Hashimoto's.
- (5) malignant thyroid ((may be)).

<u>C/P</u>:

Symptoms:

- (I) General:
 - general asthenia.
 - Over weight.
 - Intolerance to cold \to in cold days sever myxedematous patients may \to hypothermic coma.

(II) Nervous system:

- Mental duliness & ↓ alertness.
- Laziness, numbness tingling of limbs

(III) <u>C.V.S.</u>:

- CHD → A.S.H.D.
- † cholesterol.

Track Street Street

(IV) <u>G.I.T.</u>:

- Constipation +++ up to intestinal obstruction.
- Anorexia.

(V) Gonadal:

- | lipido in both sexes.
- Impotence in males.
- In females: menestrual disturbances oligomenorrhea, amenorrhea & rarely menorrhagia.

Signs:

i. General:

- choracterestic facial features:
 - o dull look
 - o puffy lids
 - o absent hairs in the outer 1/3 of eye brows.
 - o Thick lips.
- temperature.
- locally → may be: goiter or scar of previous operation.

ii. Cutaneous:

- (1) skin: thick, cool, rough.
- (2) Myxoedematous deposition.
 - Legs → pretibial Myxedema.
 - Eye lids cheeks, supraclavicular & dorsum of hands.
- (3) Hairs → ;
- patches of alopecia.
 - rough

iii. Nervous System:

- mental back wardness.
- Poly neuropathy.
- Myotonia with delayed relaxation of ankle jerk
- Acute psychosis

iv. <u>C.V.S.</u>:

- 1. ↓ H.R.
- 2. cardiac enlargement due to:
 - a. myxoedematous deposits in myocardium.
 - b. Myxoedematous deposits in pericardium.
 - c. $C.H.D \rightarrow ((athero-A.S.H.D))$

Investigation:

1. T3, T4, TSH ↓↓↓

Section of the sectio

- 2. BMR: ↓↓ < -30
- 3. ↓ protein bound iodine < 4 microgram%
- 4. radio active iodine up take < 16%.
- 5. Serum cholesterol > 300gm%
- 6. C.B.C.
 - a) microcytic hypochromic anemia responding to Fe.
 - b) Macrocytic hyperchromic anemia responding to B₁₂
 - c) Macrocytic hyperchromic anemia responding only to T4

D.D.:

- 1. anemia
- 2. myocarditis
- 3. arthritis.
- 4. subacute nephritis N.S.

Treatment:

- 1- Thyroid extract: 1/2 grain t.d.s gradually \(\tau \) to 1 grain t.d.s.
- 2- L. Thyroxin 100 ugm t.d.s.
- 3- T3 200 ugm t.d.s.

Juvenile Myxedema

Occurs around the age of puberty.

C/P: A mixture of cretinism and Myxedema.

Hypopituitary Myxedema

- Differs from adult Myxedema in:
 - 1. skin \rightarrow not thick.
 - 2. cholesterol → not ↑
 - 3. pubic & axillary hairs \rightarrow completely absent.
 - 4. T3, T4, BMR, RAIU → improves after TSH.
 - 5. hypoglycemia \rightarrow more.
 - 6. signs of \downarrow of some other pituitary hormones e.g. \rightarrow M.S.H.

Parathyroid gland

Anatomy:

4 glands (2-6) commonly on the posterior aspect of the thyroid.

The state of the s

Physiology:

The gland secretes "parathyroid hormone" (parathormone) $\ddot{\mathbf{w}} \rightarrow$

- (1) on bones:
 - \uparrow resorption \rightarrow mobilization of Ca⁺⁺ , P⁺⁺⁺ (due to stimulation of osteoclasts).
- (2) On kidneys:
 - ↑ tubular reabsorption of Ca⁺⁺ , ↓ P⁺⁺⁺
- (3) On intestine:
 - ↑ Ca⁺⁺ absorption
 - ↑ plasma Ca⁺⁺ , ↓ plasma P⁺⁺⁺
 - ↑ Ca⁺⁺ , P⁺⁺⁺ excretion

so, the most important function of the hormone is to maintain normal serum calcium.

❖ Ca⁺⁺, P⁺⁺⁺ metabolism :

normal serum Ca⁺⁺ level = 9-11 mg%

- 1. ionized 60%, important for neuromuscular excitability.
- 2. non ionized 40%, combined ē albumin.

Importance of Ca⁺⁺:

- 1. bone formation ē P⁺⁺⁺.
- 2. nerve impulse transmission.
- 3. neuromuscular excitability, ms. contraction & normal bl. coagulation.

❖ Serum P. Level:

3-3.5 mg%

 $Ca^{++} \times P = constant (about 35)$ [due to feed back mechanism.]

* Absorption:

- Small intestine specially its upper part.
- ↑ by: ↑ intake, ↓pH, D3
- ↓ by: *↑mg. *↑Ld.
 *↑aluminum. *↑fatty acids.

• Bone formation:

- (1) bone matrix (osteiod)
- (2) deposition of Ca^{++} , P^{+++} = mineralization of this matrix.

Little Line Committee Comm

Need phosphatase (acid & alkaline).

* Anabolic substances:

- Androgens

- Growth hormone

- Thyroxin in physiological amount

- Vit. A & C ± B.

* Catabolic substances:

* Glucocorticoids

* Thyroxin in excess

- Osteoporosis:
 - = Defective formation of bone matrix but what is formed is well calcified

AE:

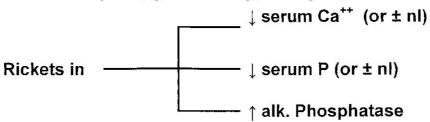
- 2. ↑ catabolic substances.
- 3. geriatric in δ , postmenopausal in \mathfrak{P}
- 4. ↓ Pit.
- 5. ↑ thyroid
- 6. Cushing.
- 7. steroid ttt.
- 8. malnutrition.
- 9. obesity
- 10. prolonged immobilization.
- Hormones affecting Ca⁺⁺ balance:
 - (1) Parathormone.
 - (2) D3 (cholecalciferol): must be activated by the kidney:
 - ↑ Ca⁺⁺ absorption
 - Direct calcific effect on bone.
 - (3) Calcitonin: by Para-follicular cells of thyroid & C- cell (Calcitonin cells).

Hypoparathyroidism (a part of hypo Ca⁺⁺)

AE:

- (i) ↓ ionized Ca⁺⁺ è ↓ of total Ca⁺⁺:
 - Hypoparathyroidism:
 - Idiopathic autoimmune.

. , . >


- Surgical.
- Radiological / thyroidectomy.
- Pseudo Hypoparathyroidism :
 - Rare hereditary.
 - Parathyroid glands are normal but the organs (bone & kidneys) are resistant to the effect of Parathormone.
 - = end organ or target organ sensitivity
 - . It is similar to pathogenesis of Nephrogenic D.I.

<u>C/P</u>: (of pseudo ↓ para)

- 1. ↓ serum Ca⁺⁺ & ↑P
 - ⊥ urine Ca⁺⁺

normal alk. Phosphate.

- 2. round face, short stature, short metacarpals, fingers.
 - ↑ index > middle.
- 3. Diet ⊥ of vit. D.
- 4. G.I.T: Malabsorption, gastrectomy, obst. jaundice.

- 5. Chronic renal failure due to :
 - P. retention.
 - vit. D. resistance.
 - ⊥ca absorption.
 - tetany rare duce to acidosis
- 6. medullary carcinoma of thyroid = ↑ calcitonin.
- 7. Ac. Pancreatitis: soaps of Ca++.

(II) ↓ lonized Ca⁺⁺ with normal total Ca⁺⁺ :

- Alkalosis:
 - † Ventillation: [Fever, Hysterical, Salisylate poisoning]
 - Prolonged vomiting (Gastric tetany).
 - ↑ Alk. Intake.

N.B.:

- Latent tetany : Ca⁺⁺ = 6 8 mg%.
- Manifest tetany : Ca⁺⁺ < 6 mg%.

- in cases of \downarrow Ca⁺⁺ not due to \downarrow Parathyroid (nL. Gland) tetany is rare due to 2ry \uparrow in Parathyroid \rightarrow mobilize bone Ca⁺⁺ \rightarrow \pm serum nL.

Treatment:

- Tetany : Ca⁺⁺ gluconate 10% I.V. during the attacks.
- for Ch. Cases: Ca** salts orally.
 - ↑ dietary Ca⁺⁺ .
 - Vit. D: orally & I.M.
 - Parathormone.

Tetany

= ↑ neuromuscular excitability due to ↓ ionized Ca⁺⁺ .

1) Chvosteck's sign:

taping (VII nerve) in front of ear \rightarrow contraction of ala-nasi tremors of mouth.

2) Trousseau sign:

Inflate the cuff of sphygmomanometer >systolic → carpopedal spasm.

Hyperparathyroidism

1ry, 2ry, 3ry& pseudo

1ry ↑ parathyroid:

<u>AE</u>:

- Adenoma of one or more gland (90%)
- Hyperplasia usually of the 4 glands
- Adenocarcinoma = rare

Effects:

- 1) ↑↑ Ca⁺⁺
- 2) ↓ P (± nl) due to ↑ mobilization of bone Ca⁺⁺ & P.
- 3) ↑ Alk. Phosphatase (± nl).
- 4) ↑urinany Ca⁺⁺&p may → Later: ositis fibrosa cystica

 Manifestatic calcification → kidney tubules
 → nephro calcinosis → Ch.R.F.
- ❖ Manifestations: (<u>symptoms</u>) ←