Second Level Course Specification: Pharmaceutical Analytical Chemistry (2) **University:** Mansoura University (MU) **Faculty:** Pharmacy **Department:** Pharmaceutical Analytical Chemistry **Course title:** Pharmaceutical Analytical Chemistry (2) Course code: PA224 | Program on which the course is given | B. Pharm | |---------------------------------------|--| | Academic Level | Second Level, Second semester, 2017-2018 | | Date of course specification approval | | #### 1. Basic Information: Course data: | Course title: | Pharmaceutical Analytical Chemistry (2) | Code: PA224 | |-------------------------|---|--------------| | Specialization: | Pharmaceutical | · | | Prerequisite: | Registration | | | Teaching Hours: | Lecture:2 | Practical: 1 | | Number of units: | 3 | _ | | (credit hours) | | | #### 2. Course Aims: - **2.1.** Give the principle of quantitative chemical methods of analysis, including oxidation reduction titrations and spectroscopic analysis (spectrophotometry, spectrofluorimetry, atomic absorption spectroscopy, AAS) - **2.2.** Recognize the general aspects of statatistics - **2.3.** Cover the applications of these methods to pharmaceutical compounds. #### 3. Intended learning outcomes (ILO_S): #### a- Knowledge and understanding At the end of this course the student will be able to: | a 1 | Recognize the different analytical techniques used for the determination of chemical substances. | |------------|---| | a2 | Recall the principles of different analytical techniques applied for the estimation of pharmaceutical compounds | #### **b-Intellectual skills** At the end of this course the student will be able to: | b1 | Propose suitable methods of chemical analysis. | |-----------|---| | b2 | Interpret experimental data based on relevant chemical and pharmaceutical principles. | | b3 | Distinguish the physical and chemical properties of chemicals. | # c- Professional and practical skills At the end of this course the student will be able to: | c1 | Apply proper and safe handling and disposal of chemicals. | | |-----------|--|--| | c2 | Show the ability to conduct experimental studies and apply different quantitative methods of analysis of pharmaceutical compounds. | | #### d-General and transferable skills At the end of this course the student will be able to: | d1 | Interact effectively in a team work. | |------------|---| | d2 | Apply calculations for chemical analysis. | | d3 | Acquire the ability to learn independently. | | d4 | Present information clearly in written, electronic and oral forms. | | d 5 | Show the ability for critical thinking, problem-solving, decision-making, and time managing capabilities. | #### 4. Contents: | Week No | Topics | No.of hours | Lecture credit hours | Practical credit hours | |---------|--|-------------|----------------------|------------------------| | 1,2 | - Introduction to redox titrations,
Nernest equation and factors
affecting redox potential. | 4 | 4 hours | | | 3,4 | - Methods for detection of end point,
Applications of redox reactions | 4 | 4 hours | | | 5,6 | - Statistics | 4 | 4 hours | | | 7 | Mid-term Exam | | | | | 8-9 | UV/Vis Spectrophotometry; Introduction Components of spectrophotometer, Beer-Lambert law, Factors affecting absorption spectrum, applications. | 4 | 4 hours | | | 40.44 | | | 41 | | |---------|---|-------------|----------------------|------------------------| | 10-11 | - Spectrofluorimetry; Introduction, Factors affecting Fluorescence, | 4 | 4hours | | | | Components of a fluorometer, applications | | | | | 12-13 | -Atomic Spectroscopy; Introduction,
Principle of AAS, Difference
between AAS & molecular
spectroscopy, Atomic absorption
spectrophotometer, Interferences in
AAS | 4 | 4 hours | | | 15 | Starting of Final written & oral | | | | | | Practical topics | | | | | Week No | Topics | No.of hours | Lecture credit hours | Practical credit hours | | 2. | 1- Determination of oxalic acid.2- Determination of oxalic acid/acetic acid mix. | 2 | | 1 hour | | 3. | 1-Determination of Fe ²⁺ /Fe ³⁺ mix.
2- Determination of H ₂ O ₂ . | 2 | | 1 hour | | 4. | 1- Determination of lead acetate. | 2 | | 1 hour | | 5. | 1-Determination of potassium persulfate. | 2 | | 1 hour | | 6. | 1- Determination of iodine/iodide mixture. | 2 | | 1 hour | | 7. | Mid-term Exam | | | | | 8 | 1- Determination of ascorbic acid. | 2 | | 1 hour | | 9. | 1- Colorimetry (KMnO ₄) | 2 | | 1 hour | | | 2- Problems on Beer-Lambert law. | | | | | 10. | 1- Colorimetry (K2Cr ₂ O ₇ .(| 2 | | 1 hour | | | 2- Problems on Beer-Lambert law. | | | | | 11. | 1- Colorimetry (Fe ³⁺ in ampoules) | 2 | | 1 hour | | | 2- Quiz on Beer-Lambert law. | | | | | | 3- Fluorimetry (demonstration) | | | | | 12. | PRACTICAL EXAM 1st group | 2 | | 1 hour | | 13. | PRACTICAL EXAM 2nd group | 2 | | 1 hour | # **5.** Teaching and learning Methods: | 5.1 | Lectures using whiteboard | |-----|---| | 5.2 | Lectures using Datashow, PowerPoint presentations | | 5.3 | Research assignments | | 5.4 | Discussion session | | 5.5 | Laboratory with equipments, chemicals and reagents. | ## 6. Student Assessment: #### a- Assessment methods | 1. Written exam | To assess understanding, intellectual and professionalskills | |-------------------|--| | 2. Practical exam | To assess professional and practical skills | | 3. Oral | To assess knowledge, understanding, intellectual skills, general skills and confidence | ## **b-** Assessment schedule | Assessment 1 | Practical | 12 th week and 13 th week | |--------------|-----------|---| | Assessment 2 | Mid-term | 7 th week | | Assessment 3 | Oral | 15 th week | | Assessment 4 | Written | 5 th week | # c- Weighting of assessments | 1. | Mid-term examination | 10% | |-------|---|------| | 2. | Final-term examination | 50% | | 3. | Oral examination | 15% | | 4. | Practical examination and Semester work | 25% | | Total | | 100% | ## 7. List of References | No | Reference | Туре | |----|--|--------------| | 1. | Practical course notes prepared by the department staff members | Course notes | | 2. | Lecture course notes prepared by the department staff members | Course notes | | 3. | Fundamentals of Analytical Chemistry, Douglas A.; Skoog; Donald M., West, F.James Holler, Stanely, R.Crouch Thomson, Australia 8th ed. (2004). | Book | | 4. | Quantitative Chemical Analysis, Daniel C. Harris, 6th ed., W.H. Freeman and Company, New York (2003). | Book | | Vogel,s Textbook of Quanitative Chemical Analysis, J. Mendham, M.A, MSc, C. Chem, M. RSC, 6th ed., India (2004) | Book | |---|------| | Pharmaceutical Analytical Chemistry, Quantitative Analysis, Amer, M.M. Faculty of Pharmacy, Cairo University. | Book | # 8. Matrix of knowledge and skills of the course | | | | ILOS | | | | |----|---|------------------------------------|-------------------------------------|---------------------|---|-------------------------------------| | No | Course contents | Study
Week | Knowledge
&
understandin
g | Intellectual skills | Professional
and practical
skills | General &
transferable
skills | | 1. | - Introduction to redox titrations,
Nernest equation and factors
affecting redox potential. | 1 st -2 nd | a1,a2 | b1,b2,b
3 | c1,c2 | d1,d2,d3,d4,
d5 | | 2. | - Methods for detection of end
point, Applications of redox
reactions | 3 rd -4 th | a1,a2 | b1,b2,b
3 | c1,c2 | d1,d2,d3,d4,
d5 | | 3. | Statistics | 5 th -6 th | a2 | b1,b2 | c2 | d1,d2,d3,d5 | | 4. | - UV/Vis Spectrophotometry;
Introduction,Components of
spectrophotometer, Beer-
Lambert law, Factors affecting
absorption spectrum,
applications. | 8 th -9 th | a1,a2 | b1,b2,b
3 | c1,c2 | d1,d2,d3,d4,
d5 | | 5. | -Spectrofluorimetry;
Introduction, Factors affecting
Fluorescence, Components of a
fluorometer, applications | 10 th -11 th | a1,a2 | b1,b2,b
3 | c1,c2 | d1,d3,d4 | | 6. | -Atomic Spectroscopy;
Introduction, Principle of AAS,
Difference between AAS &
molecular spectroscopy, Atomic
absorption spectrophotometer,
Interferences in AAS | 12 th -13 th | a1, a2 | b1,b2,b
3 | c1,c2 | d1,d3,d4 | | Course Coordinator: | Mohamed Elsayed Metwally | |----------------------------|--------------------------| | Head of Department: | Yaser El Shabrawy |