

Mansoura University

Faculty of Computers and Information Sciences

Course Specifications of

Artificial Intelligence(2) to Computer Science – CS011 – 2017/2018

University: Mansoura University Faculty: Computer and Information Sciences

Program on which the course is given:

Department offering the course: Department of Computer Science

Academic year/ Level: Fourth Year

Date of specification approval:

A-Basic Information

Title :Artificial Intelligence(2)Code :UNI111TCredit Hours :3Lecture :2Tutorial :2Practical :0

B- Professional Information

1- Overall Aims of the Course

This course aims to:

- Present both the traditional and the modern aspects of 'AI and Soft Computing' in a clear, insightful and highly comprehensive writing style.
- Provide an in-depth analysis of the mathematical models and algorithms, and demonstrate their applications in real world problems of significant complexity.

2- Intended Learning Outcomes of the course (ILOs)

By completing this course successfully, the student will be able to:

a- Knowledge and Understanding

- a1. Essential facts, concepts, principles and theories relating to computing and information and computer applications as appropriate to the program of study.
- a2. Modeling and design of computer-based systems bearing in mind the trade-offs.
- a3. Tools, practices and methodologies used in the specification, design, implementation and evaluation of computer software systems.
- a4. Criteria and specifications appropriate to specific problems, and plan strategies for their solution.
- a5. The extent to which a computer-based system meets the criteria defined for its current use and future development.
- a6. The current and underlying technologies that support computer processing and inter-computer communication.
- a10. Current developments in computing and information research.
- a13. Use high-level programming languages.
- a16. Know and understand the principles and techniques of a number of application areas informed by the research directions of the subject, such as artificial intelligence, natural language processing, data mining, databases and computer graphics.
- a17. Show a critical understanding of the principles of artificial intelligence, image, and pattern recognition.
- a19. Select advanced topics to provide a deeper understanding of some aspects of the subject, such as hardware systems design, object-oriented analysis and design, and artificial intelligence, and parallel and concurrent computing.

b- Intellectual Skills

- b1. Analyze computing problems and provide solutions related to the design and construction of computing systems.
- b2. Realize the concepts, principles, theories and practices behind computing and information as an academic discipline.
- b4. Analyze, propose and evaluate alternative computer systems and processes taking into account limitations, and quality constraints.
- b5. Make ideas, proposals and designs using rational and reasoned arguments for presentation of computing systems.
- b6. Evaluate the results of tests to investigate the functionality of computer systems.
- b9. Evaluate research papers in a range of knowledge areas.

- b10. Define traditional and nontraditional problems, set goals towards solving them, and. observe results.
- b11. Perform comparisons between (algorithms, methods, techniques...etc).
- b12. Perform classifications of (data, results, methods, techniques, algorithms..etc.).
- b13. Identify attributes, components, relationships, patterns, main ideas, and errors.
- b14. Summarize the proposed solutions and their results.
- b15. Restrict solution methodologies upon their results.
- b18. Solve computer science problems with pressing commercial or industrial constraints.
- b19. Generate an innovative design to solve a problem containing a range of commercial and industrial constraints.

c- Professional and Practical Skills

- c1. Operate computing equipment, recognizing its logical and physical properties, capabilities and limitations.
- c2. Implement comprehensive computing knowledge and skills in projects and in deployment of computers to solve position practical problems.
- c3. Deploy the equipment and tools used for the construction, maintenance and documentation of computer applications.
- c4. Apply computing information retrieval skills in computing community environment and industry.
- c5. Develop a range of fundamental research skills, through the use of online resources, technical repositories and library-based material
- c8. Handle a mass of diverse data, assess risk and draw conclusions.
- c9. Use appropriate programming languages, web-based systems and tools, design methodologies, and knowledge and database systems.
- c17. Apply the principles of effective information management, information organization, and information-retrieval skills to information of various kinds, including text, images, sound, and video.

d- General and Transferable Skills

- d1. Demonstrate the ability to make use of a range of learning resources and to manage one's own learning.
- d2. Demonstrate skills in group working, team management, time management and organizational skills.
- d5. Exhibit appropriate numeracy skills in understanding and presenting cases involving a quantitative dimension.

3- Contents

No	Course Content	Lecture	Tutorial	Total
1	Introduction to Artificial Intelligence and Soft Computing.	2	2	4
2	Production Systems	2	2	4
3	Problem Solving by Intelligent Search	2	2	4
4	Data Reduction using Rough Sets	2	2	4
5	Representing Knowledge	4	4	8
6	Reasoning and Control	4	4	8
7	Reasoning under Uncertainty	4	4	8
8	Machine Learning	4	4	8
	Total Hours	24	24	48

4- Assessment Schedule

Assessment Method	No.	Description	Week No.	Weight (%)
Mid-term Exam	1	Midterm Exam	3	5
Mid-term Exam	2	Midterm Exam	7	20
Practical Exam	4	Practical Exam	10	15
Quiz and Tasks	5	Final Exam	14	60
	100			

5- List of references

5.1 Course Notes

- Lecture handouts delivered to students at the end of each lecture.

5.2 Essential Books (Text Books)

- Russell, S and Norvig, P Artificial Intelligence: A Modern Approach (2nd Edition), Prentice Hall 2003.
- Konar, Amit.Artificial intelligence and soft computing : behavioral and cognitive modeling of the human brain, CRC Press LLC, 2000 .
- Pawlak, Rough Sets: aspects and prospectives about data, 1992.

6- Facilities Required for Teaching and Learning

- Data show.
- Speakers for audio and video files used to practice listening.

Course Content/ILO Matrix														
Course Content	a1	a3	a6	b1	b2	b4	c2	c4	c5	c13	d1	d3	d7	d8
Introduction to the														
fundamental concepts of	•		•						•					
computer science.														
Algorithmic foundations of computer science		•		•	•	•	•			•	•	•		•
Hardware issues such as number systems and computer architectures	•		•				•	•					•	
Software issues such as operating systems programming languages, compilers, networks, and human-computer	•		•	•	•	•	•	•		•		•	•	
interaction.														

Course Content/ILO Matrix

Learning Method/ILO Matrix

Course Content	a1	a3	a6	b1	b2	b4	c2	c4	c5	c13	d1	d3	d7	d8
Lectures	•	•	•	•	•	•	•	٠	•	•	•	•	•	•
Tutorials					•	•	•	٠	•	•	•	•	•	•

Assessment Methods/ILO Matrix

Assessment	a1	a3	a6	b1	b2	b4	c2	c4	c5	c13	d1	d3	d7	d8
Assignment	•	•	•					•		•	•	•	•	•
Midterm Exam	•	•	•	•	•	•	•		•					
Oral exam	•	•	•					•	•	•	•	•	•	•
Final Exam	•	•	•	•	•	•	•		•					

Course Coordinator: **Prof. Magdi Zakaria** Head of Department: Dr. Samir ElMougy Date: 6/2/2017