الحساب عند قدماء المصريين

من ويكيبيديا، الموسوعة الحرة اذهب إلى: تصفح، ابحث

إبتكر المصريون القدماء نظاما للأعداد تساعدهم على تعاملاتهم اليومية ، وكذلك كان نظام الضرائب يستلزم تواجد نظام للأعداد والحساب ، حيث كان الفلاحون يعطون جزءا من محاصيلهم السنوية القصر الملكي وأجزاء أخرى المعبد والكهنة. ولا ننسى التجارة المتداولة بين فراعنة مصر مع البلاد المحيطة . من تلك المعاملات التي بدأت منذ عهد الأسرة الأولى مع فلسطين وسورية ولبنان الحصول على الأخشاب ، وكذلك مع العراق والنوبة . وامتدت في عهد الملكة حتشبسوت بل وقبلها أيضا الحملات التجارية إلى بلاد بنت عند القرن الإفريقي على البحر الأحمر . وكثيرا ما كانت المقايضة تددفع بالذهب الذي كان المصريون ينقبون عنه في النوبة وفي سيناء .

- كان تعلم الكتابة والحساب يـُزاول في المعابد . وكانت مهنة الكاتب مهنة مرموقة ، وكانت لها درجات تبدأ بالكاتب البسيط (شس) إلى رئيس كتبة وكان هذا يسمى أمير كتبة (أمير شس) ، وتعلو مراتب الكتاب إلى كاتب البلاط الملكي (شس-نسيط) وكانت أعلي مرتبة هي مرتبة أمير كتبة البلاط الملكي (أمير شس-نسيط) . وكان أمير كتبة البلاط الملكي في نفس الوقت مهندسا أو طبيبا أو كلاهما معا ، وكان الآباء يشجعون أبناءهم علي التعليم واحتراف مهنة الكاتب ، حيث أن الكاتب لا يقوم بالأعمال اليدوية أو الجسدية المرهقة التي يقوم بها العمال . بل كانت مهمة الكاتب حتى البسيط منهم مثلا تسجيل المحصول عندما يقوم الفلاحون بجني المحاصيل ، وتسجيل عدد الأبقار والأغنام والثروة الحيوانية والطيور ، وحساب النسبة المخصصة للقصر على أساس منسوب مياه النيل في ذلك العام.
 - ونظام الأعداد الذي ابتكره المصريون القدماء كان نظاماً عشرياً. فكان رمز الواحد شرطة | والعشرة رمزها

، والمئة رمزها

9

والألف رمزوا له ب

3

، كما كان رمز المئة ألف هو الإصبع.

الإله توت Thoth صورة منحوتة على جدار معبد الرامسيوم * وكان المصريون القدماء يعتقدون أن الإله توت (Thoth) هو الذي علمهم الحساب والكتابة. وتجد صوره على الأخص في كتاب الموتى ، حيث يُصوروه واقفا عند الميزان يوم الحساب في العالم ألآخر ، بالقلم ولوح الكتابة في يديه ، يدون أعمال الموتى ، ويقدم الحساب إلى [أوزوريس

• ومما هو جدير بالذكر أن الكاتب المصري القديم كان يمسك بقلم الكتابة بإصبعين اثنين ويكتب عادة من اليمين إلى اليسار ، وكان يبدأ كتابة رسالته قائلا "أكتب إليك بإصبعي الإثنين".

محتويات

- أعداد
- ۲ الکسور
- الكسور وعين حورس Oudjat
 - ٤ الجمع عند قدماء المصريين
 - الطرح عند قدماء المصريين

- · <u>الضرب عند قدماء المصربين</u>
- V القسمة عند قدماء المصريين
 - ٨ لوحة قرابين
 - ٩ مخطوطة رند
 - ١٠ انظر أيضاً

أعداد [عدل]

تُكتب الأربعة ٤ هكذا:

....4 | | | |

وتُكتب الخمسة عشر ١٥ هكذا:

....15 |||||n

وكانوا يكتبون ٢٣١ هكذا:

....231 Innnee

• ولكتابة العدد ٢٦٢٢ على السطر كانوا يكتبوه كالآتي : الرقم الكبير على اليسار والصغير على اليمين ، مع العلم بأنهم كانوا يكتبون في العادة من اليمين إلى اليسار ، كما نكتب نحن اليوم . وكان اليمين بالنسبة لهم مباركاً وطيبا ويسمونه (يمينت) أما اليسار فكانوا لا يحبونه ويعتقدوا أنه مكان الأرواح الشريرة:

الكسور عدل

استطاع قدماء المصربين أن يبتكروا تركيبة للكسور من الأعداد ، وهي طريقة تشابه طريقتنا الحديثة حيث استعملوا رمز الفع وهو ينطق (را) وكتبوا تحته الرقم المعبر عن الكسر . فمثلا ، هكذا كانوا يكتبون الكسر العددي ٣١١ :

$$\frac{1}{3} = \bigcirc$$

كما استخدموا رموزا ً خاصة لبعض الأعداد القليلة الكثيرة الاستخدام ، مثل النصف ٢١٦ والثلثين ٣١٢ والثلاثة أرباع ٤١٣ :

$$\frac{1}{2} = \frac{1}{2}$$

$$\frac{2}{3} = 3$$

$$\frac{3}{4} = 3$$

• وبالإضافة إلى تلك الثلاثة كسور المميزة ، ظل المصريون القدامي يعتمدون بصفة أساسية على الكسر في الهيئة البسيطة ١١س ، حيث س يمكن أن تأخذ الأعداد ٥ ، ٦ ، ٧ ، ألخ ، مثل :

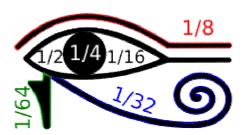
$$\frac{5}{12} = \frac{1}{3} + \frac{1}{12} = \bigcirc$$

ولم يتوصلوا لاختصار مثلا (٥١١ + ٥١١= ٥١٠) ، وكتابة ٥١٢، بل كانوا يكتبو ن الخُـمُسين متجاورين :

$$\frac{2}{5} = \frac{1}{5} + \frac{1}{5} =$$

ومثال آخر ، مثال الثلاثة أخماس:

$$\frac{3}{5} = \bigcirc \bigcirc \bigcirc$$


أصّروا على المحافظة على صورة الكسر ١/س ، مع مراعاة كتابة الأعداد الصغيرة على يمين الأعداد الكبيرة :

الكسور وعين حورس Oudjat عدل]

• مقالة مفصلة: عين حورس

استعمل المصريون القدماء مكابيلا لقياس الحبوب والبقول، هذا المعيار كان يـُسمى (حقات) hekat. وكانت الحقات مقسمة للأحجام الآتية: ٢١١، ١١١، ١١١، ١١٦١، ٣٢١١، و ١٤١١. واستعملوا في كتاباتهم رموزاً مأخوذة عن أجزاء من رمز عين حورس التي كانت مقدسة لديهم، وكانوا عموماً يستخدمون عين حورس للزينة

علي شكل القلائد ، ولكن الأهم في لبسهم القلائد في صورة عين حورس التي تسمى (وجات) Ougat ، وهي للوقاية من الحسد ومن الكائنات الضارة ، والأرواح الشريرة.

صورة لعين حورس وتفاصيل أجزائها وقيمة كل جزء منها الحسابية

• وكما في الصورة استعمل الكاتب المصري هذه الأجزاء من عين حورس لتدوين كميات الحبوب والبقول ،

فكان يكتب مثلا كميات من القمح مثلا كالأتي: حقات ٤١١ أو حقات ١٦١١ ٣٢١١ .

الجمع عند قدماء المصريين عدل

• كان نظام الأعداد عند قدماء المصريين نظاما عشرياً ، لكنهم لم يتوصلوا إلى الصفر . فكان للعشرة رمز خاص بها ،وكذلك الحال بالنسبة إلى المئة ، والألف ، وهكذا . إلا أن نظامهم كان يسهل عمليات الجمع والطرح ، وابتكروا طرقاً ولحسابات الضرب والقسمة . سنبدأ بالجمع :

مثال : نرید أن نجمع ۲۳۲۲ + ۱۳۲ = ۲٤٥٤

IInn%% [[

+

Monon!

_

والنتيجة كما في السطر الثالث عبارة عن العدد ٢٤٥٤.

الطرح عند قدماء المصريين عدل

طريقة الطرح يسيرة أيضاً مثلها في بساطتها كمثل الجمع.

مثال ۱: ۲۳۲۲-۲۳۲۱ =۲۲۰۱

IInn 666 []

Inne

12991

=

ونتيجة عملية الطرح كما نرى ٢٢٠١ .

مثال ۲: ۲۳۱۲ = ۲۱۲۲ = ۲۳۱۲

=

IIn999 [[

ونتيجة عملية الطرح كما نرى ٢٣١٢ .

الضرب عند قدماء المصريين عدل

إبتكر قدماء المصريين طريقة لإجراء العملية الحسابية التي تعرفها بعملية الضرب وذلك بطريقة استخدام الجمع ، وكانت القاعدة الأساسية المتبعة في ذلك هي المضاعفة العددية . وقد عرفنا تلك الطرق التي كانوا يستعملونها في

الحساب عن طريق ما وجدناه من آثار هم في هيئة المخطوطات مثل Papyrus de Moscou ومخطوط Papyrus de Moscou ومخطوط . Papyrus Rhind ونوضح طريقة المضاعفة المتوالية في عمليات الضرب بالأمثلة ألآتية :

مثال ١: نريد حاصل الضرب ٧ . ٩ = ٦٣

للحصول على نتيجة حاصل الضرب ، يبدأ الكاتب المصري في مضاعفة العدد \vee على التوالي ويبحث عن نتيجة المضروب $(\wedge + 1)$ ، كالآتى :

٧ ١ <

14 2

28 4

56 8 >

11 16

63 9

من خلال مضاعفة ٧ يصل عند ٧ . ٨ = ٥٦ ، وبعد ذلك يضيف عليها ٧ فيحصل على النتيجة ، حيث أن ٧ + ٥٦ = -7.

مثال ۲: نرید حاصل الضرب ۵۹ . ۳۷ = ۲۱۸۳

نبدأ في مضاعفة العدد ٥٩ على التوالي ، كالآتي :

09 1 *

118 2

236 4 *

472 8

944 16

188 8 32 *

2183 37

- من خلال مضاعفة ٥٩ وصلنا أولا ً إلى حاصل ضرب العددين ٣٢ . ٥٩ = ١٨٨٨ .
- بعد ذلك نضيف عليه حاصل الضرب(نظر الأسطر المعلـّمة): (٤ + ١). ٥٩ = ٢٣٦ + ٥٩ = ٢٩٥ فنحصل على النتيجة ٢١٨٣.

القسمة عند قدماء المصريين عدل

تعتمد القسمة أيضا على مضاعفة الأعداد على التوالي السابق شرحها مع عمليات الضرب ولكن مع بعض الفروق لمواءمتها للإيفاء بالغرض .

مثال ۱: نرید قسمة ۲۱۶ علی ۳ ، أی (۲۲۴÷۳=۸۸)

يبدأ الكاتب المصري القديم بمضاعفة العدد ٣ بالخطوات التالية:

3	1
6	2
12	4
24	8 >
48	16 >
96	32
19 2	64 >

264 88

وبتعيين الأعداد المعلم عليها بالمؤشر وجمعها يصل إلى النتيجة : $\Lambda + 17 + 37 = \Lambda \Lambda$

مثال ۲:

يُعتبر مثلنا السابق مثلا بسيطا ، فهو يؤدي إلى حاصل قسمة لعدد صحيح لا يحتوي على الكسور.

في مثالنا التالي تؤدي عملية قسمة ٢١٢÷٦ علي نتيجة تحتوي على الكسور .

نبدأ بمضاعفة العدد ٦:

6	1 >
12	2 >
24	4
48	8
96	16
 192	32 >
2	1\3 >

.... 212 +35 1\3

قمنا بمضاعفة العدد ٦ حتى وصلنا إلى العدد ١٩٢ ، وبقي فارق بين العددين ٢١٢ و ١٩٢ مقداره ٢٠ فقط. وبمراجعة السطرين الأولين نجد أنهما يأتيان بالعدد ١٨ ويبقى العدد ٢ الذي نجد أنه ثلث العدد ٦ .

بهذا يحصل المصري القديم على نتيجة القسمة ويقوم بتدوينها على النحو التالي : 1 + 7 + 7 + 7 + 7 = 7 همثال 7:

استطاع الكاتب المصري أيضاً باستعمال طريقة المضاعفة قسمة عدد صغير على عدد كبير .

في المسألة التالية نريد قسمة ٤ على ٧ ، أي ٤ ÷ ٧ = ٤/٧ ، فكيف كان يقوم بذلك ؟

بمقارنة ٤ بالنسبة إلى العدد ٧ ، نجد أن الأربعة أكبر قليلا عن نصف ال ٧ . بهذا نجد العضو الأول من الحل ، وهو ٢/١.

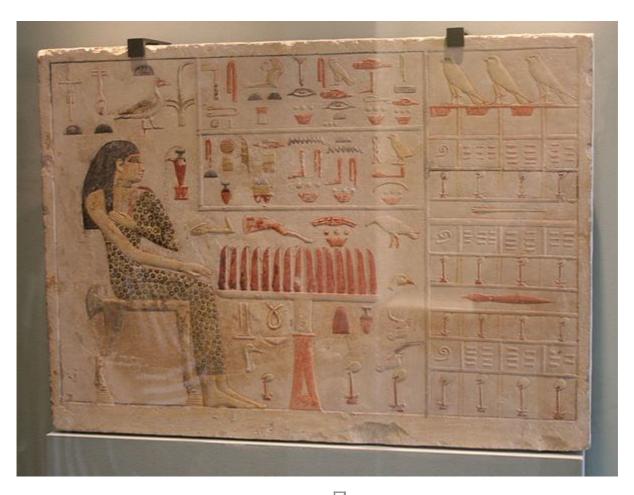
في الخطوة التالية يبدأ المصري القديم بمضاعفة المقام (٧) على التوالي كالمعتاد:

7	1
1\2 3	1\2 '
1	1\7
1\2	1\14 '

.... 4 1\1+14\2

وجدنا الحل: فقد وصلنا إلى المقسوم بالكامل وهو العدد ٤ ، ونجمع العددين المطلوبين هنا فنحصل على الحل : ١٤١١ .

مثال ٤: قسمة ١٦٦٠ على ٣٣ أي (١٦٦٠ :٣٣):


33	1
66	2 1>
132	4
264	8
528	16 <i>2</i> >
1056	32 3>
1\4 8	1\4 <i>4</i> >
1	1\33 <i>5</i> >
1\4 1\2	1\44 6>

... 1660 + 1\33 + 1\4 + 50 1\44

ونشرح الطريقة كما يلي : ضاعفنا العدد ٣٣ خمس مرات تباعا ووصلنا إلى العدد ١٠٥٦ . ونلاحظ أن جمع الأعداد المعلمة ١٠٥٦ + ٢٥ + ٦٦ = ١٦٥٠ . والفارق بين ١٦٦٠ و١٦٥٠ هو ١٠ .

ونبدأ البحث عن كسور ال ٣٣ ونجد أن ١٠ تحتوي على ربع ٣٣ ومقداره ١/٤ ٨. وأصبح العدد الناقص لتكملة ١٦٦٠ هو ١٨٤ أي واحد وثلاثة أرباع . الواحد يعطينا العدد ١٣٣١ ، والثلاثة أرباع ما هي إلا ٢١١ و ٤١١ ، وثلاثة أرباع العدد ١٣٣١ + ٤١١ + ١٠٠ .

لوحة قرابين عدل

لوحة ملونة للأميرة نفرتيابت من الدولة القديمة (٢٥٦٥ -٢٥٩٠ قبل الميلاد) من قبر ها بالجيزة وأمامها أعداد لمختلف القرابين . متحف اللوفر ،باريس.

مخطوطة رند[عدل]

في مخطوطة رند Rhind يشرح المصري القديم حساب المساحات وحساب المثلثات .

ם

.Il papiro di Rhind