الماري المالية

Mansoura University
Faculty of Science

Chemistry Department Subject: Biochem (279)

Course: Amino acids and proteins

Second Term Level (2) Biochemistry Date: June 2010

Time allowed:2 hours Total Marks: 80 marks

Please: Answer all the following questions.

Question (1) Complete the following spaces with suitable answer.

(20 marks, one mark for each point)

- 1) Sulpher containing amino acids is......and.....and....
- 2) Protein bonds is......and......
- 3) Zwitter ion means.....
- 4) Transdeamination means.....
- 5) L amino acids oxidase needsas a co enzyme, while D-amino acids oxidase needs.....as a co enzyme.
- 6) In oxidative deamination L- glutamate gives and ... by enzymeand needsas a co enzyme
- 7) Amino acids give α- ketoglutrate areand......and.......
- 8) Amino acids give succinyl –Co A are.....and.....and.....
- 9) Serine delaminated to pyruvate by
- 10) Creatine is formed from, and Which need to give creatine phosphate

Ouestion(2).which of the following statement is true or false.

(20 marks, one mark for each point)

- 1) Glycine is formed from serine.
- 2) Albinism is due to defective in melanin synthesis.
- 3) Classic PKU is due to a defect in phenylalanine hydroxylase enzyme.
- 4) Tyrosine is hydroxylated to dihydroxy phenylalanine by tyrosine hydroxylase.
- 5) Histadine is decarboxylated to histamine by histadine decarboxylase.
- 6) Melatonin is produced from N-acetylation of serotonin..
- 7) Lysine is the precursor of carnitine.
- 8) Deficiency of tryptophan lead to deficiency of nicotinic acid.
- 9) Insulin is inactivated by hepatic glutathione insulin trans hydrogenase.
- 10) Glutamine is hydrolysed to glutamate and NH3 by glutaminase enzyme.

Question (3). Compare between the following with special reference to

biosynthesis and structure

(40 marks, 10 marks for each point)

- a) Urea cycle & glucose alanine cycle
- b) Phenyl ketonuria & Alkaptonuria
- c) Polyamines & Catecholamines.
- d) Skatole & Indole

Good luck Prof.Dr. El Said El Sherbini

الم مِن النّاف بونا جي كيميا . _ كيميا فنريا سُون للسوائل والحماليل

Mansoura University
Faculty of Science
Chemistry Department
Subject: Physical
Chemistry
Course(s): Physical
Chemistry of Solutions

First Term
Date: June - 2010
Time Allowed: 2 hours

Full Marks : 60 Marks

Answer the following questions:

1-a) Expllain the following:

Partial molar quantities – Gibbs Duhem equation and free energies of components of a solution. (7.5 marks)

b) The vapour pressure of pure water at 25° C is 3.12×10^{-2} atm. What is the vapour pressure of a 100 gram sample of water in which 28 gram of sucrose. $C_{12}H_{22}O_{11}$, is dissolved?

(M.W: H = 1, C = 12 and O = 16)

(7.5 marks)

2- a) Write shortly on the different colligative properties of solutions.

(7.5 marks)

- b) The boiling point of benzene is raised from its normal value 80.1 to 82.4° C by the addition of 15 gram of biphenyl $C_6H_5C_6H_5$ to 100 gram of benzene. What are the boiling point elevation constant and the heat of vaporization of benzene. (7.5 marks)
- 3- a)Explain three different applications of conductance measurements. (7.5 marks)
- b) At 300 K,the equivalent conductance at infinite dilution of KCl , KNO $_3$ and AgNO $_3$ are 149×10^{-4} , 145×10^{-4} and 133×10^{-4} Ohm $^{-1}$.m 2 . eq $^{-1}$.Calculate the equivalent conductance of AgCl at infinite dilution.. If the conductivity of saturated solution of AgCl at this temperature is 1.887×10^{-4} Ohm $^{-1}$,calculate the solubility and solubility product of AgCl.

(7.5 marks)

- 4- a) Write on the transference number and its methods of determination. (7.5 marks)
- b) In moving boundary experiment for 0.1 M KCl solution and by using LiCl as indicator solution, 0.007 Ampere current was passed for 30 minutes. The moving boundary moves 6 cm in capillary tube with area 0.12 cm², calculate the transference numbers for cation and anion.

(7.5 marks)

Mansoura University

Faculty of Science

Chemistry Department

Subject: Chemistry

Course(s): Chem.233 Physical Organic Chemistry II

Second Term

2nd Level Chemistry Students

Date: May, 2010

Time Allowed: 2 Hours

Full Mark: 60 Marks

Answer Three Questions only, Each Question = 20 Marks

Q. 1: In each of the following pairs of compounds decide which member that fits the description.

Explain your answer

i-- More reactive toward nucleophilic addition

iii- Form more stable yilde with Ph₃P/Bu-Li

v- More reactive toward acyl substitution addition

vii- More suitable for synthesis of 3° alkyl ester

(Each one 2.5 Marks)

ii- Has lower PKb value

iv- Form cyclic acetal with CH₃OH/H⁺

vi- Form stable hydrate

$$C_6H_5$$
 H & C_6H_5 H

viii- Much stronger base in H2O

Q. 2: a- Arrange the following in order of decreasing with respect to their basic strength. Explain. (4 Marks)

$$\mathbb{A}$$
 & \mathbb{A} \mathbb{A}

- b) Draw the structure of the major product(s) when the isomer of the amine I is treated with: (6 Marks)
- i- An excess of CH₃I, then Ag₂O, then heated

ii- MCBPA and then heated

c) For the reaction of aldehydes and ethanol in acid medium, the results shown in the table are obtained:

R-CHO + 2 C_2H_5OH / HCl_g \longrightarrow $RCH(OC_2H_5)_2$ (6 Marks)

R CH_3 (CH_3)₂-CH (CH_3)₃C C_6H_5 % Yield of product (%) 78 71 56 39

- i- Write the steps involved in the formation of the product
- ii- Explain the difference in percent conversion of aldehydes to the product as shown in the table.

d) Suppose we have pure (R)-2-butyl acetate shown below that has been labeled with the heavy ¹⁸O isotope. Draw a mechanism for the hydrolysis of this compound under basic conditions (NaOH). Predict which of the products will contain the ¹⁸O label. Also predict whether the 2-butanol produced will be pure (R), pure (S).

$$H_3C \xrightarrow{O} \begin{array}{c} C_2H_5 \\ O \\ 18 \end{array}$$
 (4 Marks)

Q. 3: For each of the following reactions pair, complete, discuss the reaction mechanism and compare the difference in reactivity

(Each one 5 Marks)

$$i- \begin{picture}(20,0) \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){$$

$$ii - (H_3C)_2N \xrightarrow{O} C_6H_5CHO \\ H \text{ NaCN, } C_2H_5OH$$
 & $H_3C-O \xrightarrow{O} H \xrightarrow{O} C_6H_5CHO \\ NaOH, C_2H_5OH$

iii - 2
$$H_3C$$
 CH_3 Mg, H_2O & 2 H_3C CH_3 $TiCl_3, LiAlH_4$

iv -
$$CH_3$$
 NaOH, CH_3 NaOH, CH_3 CH_3

Q. 4: Give the structure of the product(s) for the following reactions. Please do not forget to draw out the reaction mechanism.

(Each one 2.5 Marks)

$$i - \bigcirc = O \xrightarrow{NH_2OH} \qquad \qquad ii - H_3C \xrightarrow{CH_3} O \xrightarrow{C_2H_5OH} \qquad \qquad \qquad CH_2 = O \xrightarrow{CH_3} O \xrightarrow{CH_3OH} O O O O O O O O O O O$$

$$iv - \bigvee_{H=0}^{O} + C_6H_5CHO$$

$$iv - \bigvee_{H=0}^{H=0} + C_6H_5 \bigvee_{H=0}^{O} + C_6H_5 \bigvee_{H=0}^{O}$$

$$v - Br$$
 $vi - C_6H_5 \stackrel{\bigcirc}{\longleftarrow} 0$ $i - CBr_4, Ph_3P$ $ii - C_6H_5 \stackrel{\bigcirc}{\longleftarrow} 0$ $ii - H_2O$

$$vii - \underbrace{\begin{array}{c} O \\ H \\ CH_3 \end{array}}_{O} \underbrace{\begin{array}{c} NaOH \\ C_2H_5OH \end{array}}_{O} \underbrace{\begin{array}{c} i - (CH_3)_2NH, H^+ \\ ii - CH_3CI, H_3O^+ \end{array}}_{O}$$

Good Luck

Examiners: Prof. Dr. S. Elmorsy

Dr. M. Elfedawy

Prof. Dr. M. Abdel-Mogibe

Dr. Ebrahim Abdel-Galil

Mansoura University Faculty of Science Dept. of Chemistry

Course Code and Title: Chem 234

Spectroscopy I

Second Semester (May 2010) Final Exam

2nd level Chemistry Programme

Time allowed: 2 hours Full Mark: 4x20= 80

Answer The Following Questions

1) Three C₃H₆O isomers have the spectroscopic properties given below. Select the most likely structure for each from the compounds in the following group:

- (i) One ¹H nmr signal; infrared absorption at 2900 and 1715 cm⁻¹ (6 marks)
- (ii) Three 13 C nmr peaks (two at $\delta > 100$ ppm); infrared absorption at 3100, 2900, 1650 & 1100 cm⁻¹ (7 marks)
- (iii) Three 13 C nmr peaks (one ca. δ 200 ppm); Three 1 H nmr signals (one near δ 9.0 ppm) (7 marks)
- 2) A C₅H₁₂O₂ compound has strong infrared absorption at 3300 to 3400 cm⁻¹ The ¹H NMR spectrum has three singlets at δ 0.9, δ 3.45 and δ 3.2 ppm; relative areas 3:2:1. The 13 C NMR spectrum shows three signals all at higher field than 100 ppm. Discuss the spectra suggesting a structure for this compound. (20 marks)
- 3) A C₁₀H₁₄ compound has the following ¹H NMR, ¹³C NMR and IR spectra. Discuss the spectra suggesting a structure for this compound. (20 marks)

- 4) (i) Which of the following pairs of compounds could probably be distinguished from each other by their uv spectra? Explain. (8 *marks*)
 - (a) CH₃CO₂CH₂CH₃, CH₃CH₂CO₂CH₃

(ii) Predict the *m/e* values for the products of the McLafferty rearrangement of **three of the following** compounds: (12 *marks*)

(a)
$$CH_3CH_2CCH_3$$
 (b) CH_3CHCH_2CH

Good Luck

Prof. Dr. Mamdouh Abdel-Mogib

الم حق اللات - ولم الله (متراشي)

Mansoura University
Faculty of Science
Chemistry Department
Subject: physical chemistry

Second term Second level(Chemistry students)

Date: June 2010

Time allowed: 2 hours Full Mark: 80 Marks

Course: Quantum chemistry
Course code: Chem. 244

Answer the Following Questions

Q1)	1) When a metal s	surface is irradiate	ed by light of	wave length 4	1 Å the stopping	potential fo	ound
	to be <u>0.5eV</u> . Ca	alculate the work	function and t	he threshold	frequency that cl	naracterize	this
	metal.					[8 Marks]	

2) Calculate the <u>minimum basis set</u> that could be used to build the molecular orbitals for the following molecules.

a) NH₃

b) CH₃OH

[8Marks]

3) A monochromatic X-ray beam whose wave length is <u>0.558 Å</u> is scattered through an angle of <u>46°</u>. What is <u>the wave length</u> of the scattered beam? [8 Marks]

Q2) 1) Explain very briefly the following:

i-Two operators do commute with each other. ii-The Hamiltonian operator is hermitian.

[4 Marks] [4 Marks]

- 2) State the Heisenberg uncertainty principle and explain it from the quantum mechanics point of view. [8Marks]
- 3) For a photon with momentum 2.4x10⁻¹⁹ gm cm/sec, calculate the wave length and the energy of this photon. [8 Marks]
- 4) Write the <u>secular equations</u> and the <u>secular determinant</u> for the <u>ethylene</u>(CH₂=CH₂) molecule. [8 Marks]
- Q3) 1) For the 'H³⁵Cl molecule:

Calculate the <u>first four rotational energy levels</u> and the <u>first four vibrational energy levels</u> and comment on the separation between these <u>rotational</u> and the <u>vibrational energy levels</u>.

[8 Marks]

- 2) For the butadiene molecule (CH₂=CH-CH=CH₂) and on basis of a particle in a one-dimensional box, calculate the <u>energy difference</u> between the <u>HOMO and LUMO</u> knowing the C-C bond distance is $\underline{1.39 \times 10^{-10} \text{ m}}$ [8 Marks] (mass of the electron m_e =9.1x10⁻³¹ kg, h=6.62x10⁻³⁴ j.s)
- 3) i- what are the possible total angular momentum values of the corresponding **Z**-component value for the orbital

a) 3d

b) 2p

[4 Marks]

ii-Predict the Hamiltonian operator for the following:

a) H_2^+ Molecular ion

b) He atom

[4 Marks]

Best wishes,

Dr. Ahmed El Defrawy

(2-3mple_260)-100-100-20-0) 8.5: CIM Com. (CI) as chip L,

دور مایو ۲۰۱۰ الزمن: ســاعتان التاريخ: ۲۰۱۰/۲/۱۷

كلية العلوم - قسم الرياضيات

الفرقة: الثانية المادة: ر ٢٠١ - رياضيات بحتة (تفاضل عالي ومعادلات تفاضلية)

الشُعب : كيمياء -كيمياء حيوية -كيمياء ونبات -ميكروبيولوجيا -كيمياء وحيوان -علوم البيئة -جيولوجيا

أجب على الأسئلة الآتية: (٢٠ درجة لكل سؤال)

$$(x,y) \to (0,0)$$
 موذلك عندما $(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$ المتكررة و النهاية العامة للدالة $u(x,y) = \tan^{-1}\left(\frac{x^3 + y^3}{x - y}\right)$ وذلك عندما $u(x,y) = \tan^{-1}\left(\frac{x^3 + y^3}{x - y}\right)$ باستخدام نظرية أويلر للدوال المتجانسة اثبت أنه إذا كانت

$$x u_x + y u_y = \sin 2u$$
 : فإن

و المنحنى المحصور
$$\int (x^2-y)dx + (x-y^2)dy$$
 هو المنحنى المحصور [2] حقق نظريـــــة "جرين" للتكامل و المنحنى المحصور

بين المستقيم y=x و القطع المكافئ $y^2=x$ مأخوذاً في الاتجاه ضد عقارب الساعة .

،
$$(n = 2,3,4,...)$$
 , $I_n = \frac{n-1}{n} I_{n-2}$: فاثبت أن $I_n = \int\limits_0^{\pi/2} \sin^n x \, dx$ أ. إذا كان

$$\int_{0}^{\pi/2} \sin^6 x \, dx$$

 $\frac{1}{2}$. $\int \sin^6 x \, dx$: التكامل التكامل ومن ثم استنتج قيمة

$$xy'-y^2=1$$
, $y(1)=1$

ب. حل مسألة الشروط الابتدائية:

[4] حل المعادلات التفاضلية الأتية:

(i)
$$\ln(y^2 + 1) dx + \frac{2y(x-1)}{y^2 + 1} dy = 0$$

(ii)
$$4xy' - y = 4xy^5 \ln x$$

مع التمنيات بالتوفيق ﴿