(MIN) any, has age has condition (

Mansoura University

Faculty of Science

Chemistry Department

Code: Chem.341

Subject: Electrochemistry

First Term

Third Level

Program: Biochemistry

Date: January 2012

Time Allowed: 2 hours

Full Mark: 60 Marks

Answer All Questions

First Question: (15 Mark)

[A] Derive an equation for calculating the heat of reaction ΔH and entropy change

 ΔS from emf measurement.

(5 Mark)

[B] Write on each of the following: (10Mark)

(i) Calomel electrode. (ii) The standard hydrogen electrode.

(iii) Metal-insoluble oxide electrode. (iv) Electrode potential.

Second Question: (15 Mark)

[A] Discuss in detail Decomposition potential. (9Mark)

[B] Derive the Nernst equation relating electrode potential with concentration.

(6Mark)

Third Question: (15 Mark)

[A] Give Reason: (10Mark)

(i) Glass electrode is preferred than other electrodes for measuring solution pH.

(ii) Maximum emf obtainable from a simple cell does not exceeds 2 V.

(iii) Le Clanche cell is irreversible.

(iv) Selecting Pt electrode as the best choice for the standard hydrogen electrode.

(v) There is no metal giving low oxygen overpotential.

[B] Write on Electrolyte concentration cell without transference. (5Mark)

Fourth Question: (15 Mark)

[A] Deduce mathematically the equation for a polarized electrode (Electrode kinetics for irreversible electrode). Illustrate the form of this equation under conditions of :

(i) High overvoltage (η . 0.05V, Tafel equation). (ii) Low overvoltage (η 0.02 V). (10 Mark)

[B] The standard Weston-Cadmium cell has a voltage of

 $[1.0186 - 4.06 \times 10^{-5} \text{ (t-20)}] \text{ volts at } 25^{\circ}\text{C}$. Calculate:

(i) ΔG , (ii) ΔH , (iii) ΔS in the cell reaction at 25°C. (5 Mark)

Good Luck: Prof. Dr. Ahlam M. A. Helmy

Harland - Dal, Till (647)

Mansoura University

Faculty of Science

Chemistry Department

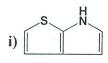
Subject: Chemistry

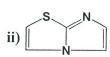
Course(s): Org.Chem.337

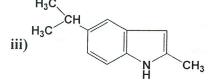
1st Term

3rd Level Students

Date: 23 / 1 / 2012


Time Allowed: 2 Hours


Full Mark: 80 Marks


Answer All Questions

1- a) Give acceptable name of each of these heterocycles:

[8 Marks]

b) Diagram the following:

[18 Marks]

- i) Conversion of pyridine to 4-nitropyridine
- ii) Synthesis of quinoline
- iii) Formation of 3-cyanomethylindole
- iv) Preparation of 2- chlorothiophene

2- Complete these reactions:

[27 Marks]

i)
$$Ph Na^+$$
 $i) CO_2$ $ii) H^+$

ix)
$$\begin{array}{c|c} CH_2-CH_2 & HCOOEt \\ | & | \\ HS & NH_2 \end{array}$$
 $\xrightarrow{P_2O_5}$

3- a) Design one synthesis of each of the molecules below:

[18 Marks]

b) Diagram these conversions:

[9 Marks]

ii)
$$CH_2$$
 CH_3

Best Wishes and Good luck

Examiners: Prof. Dr. Ez Kandil, Prof. Dr. Evelin Boshra, A.Prof. Dr. Eman Keshk

(4410) autisaries, has - and, not and veil

Mansoura University

Faculty of Science

Chemistry Department

Subject: Chemistry

Course(s): Chem.336 Physical Organic Chemistry

First Term

3rd Level Biochem, Zoology and Botany/ Chem. Students

Date: Jan. 2012

Time Allowed: 2 Hours Full Mark: **80** Marks

Answer All Questions

Question 1 (30 marks)

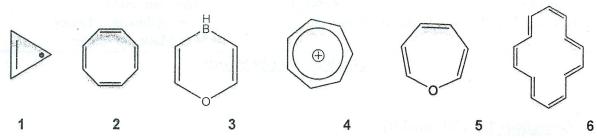
1_ Write the major product(s) of <u>Five only</u> from the following reactions. Explain the suitable mechanism for each one. (20 marks)

a)
$$\bigcirc$$
 CHO + HO \bigcirc OH $\stackrel{\oplus}{\overset{H}{\overset{}}}$

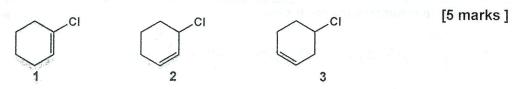
d) MeO—CHO
$$\frac{\text{HCN}}{\text{OH}^{\Theta}}$$

$$SO_3$$
 H_2SO_4

2- Write shortly what you know about two only of the following :


[10 marks]

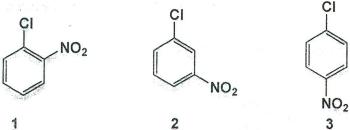
- a; Generation and stability of carbocations.
- b; Stereochemical mechanism of SN¹ and SN² reactions.
- c: Orientation of monosubstitued benzene.


Please turn the paper

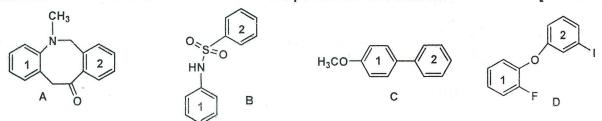
Question 2 [25 marks]

a) Predict with discussion <u>five only</u> of the following structures is aromatic, antiaromatic or nonaromatic. [10 marks]

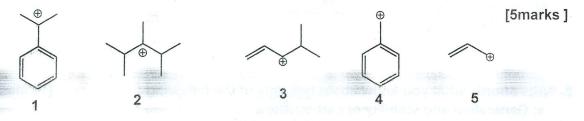
b) Which of the following isomeric chlorides will undergo SN¹ more readily? Give reasons.



c) Propose with discussion a synthesis of 2-chloro-4-nitro benzoic acid from benzene. [10 marks]


Question 3 [25 marks]

a) Show by mechanism which of the following compounds gives a mixture of three products when treated with NaOH under high temperature and pressure.


[10 marks]

b) Which ring (1) or (2) in the following compounds undergo electrophilic nitration more readily than the other. Indicate with discussion the position of the reactin. [10 marks]

c) Arrange the following carbocations according the stability. Explain the reasons.

Mansoura University
Faculty of Science
Chemistry Department
Course(s):. (323) Biochemistry

First Term, Level Three.

Date: 5 January 2012

Time Allowed: 2 hours

Full Mark: 60 Marks

Please turn over

ANSWER THE FOLLOWING QUESTIONS

	i) [Cl ₃ (NH ₃)Fe-(OH) ₂ -Fe(NH ₃)(en)Cl] ii) [Pt(NH ₃) ₄][PtCl ₆] iii) [Mn(CN) ₆] ⁴⁻ iv) [Zn(pyridine) ₂ Cl ₂] v) [PtCl ₂ (NH ₃) ₄]Br ₂	<u>(15 Marks)</u>
	B- Write the structural formula for each of the following compounds: i- Potassium hexacyanomanganate(III). ii- Tri μ-carbonylbis(tricarbonyliron(0)). iii- Pentaminenitritocobalt(III) ion. iv- Sodium tetraoxochromate(VI). v- Tetramineplatinium(II) tetrachloroplatenate(II).	(5 Marks)
2	i- Trans [PtCl ₂ (NH ₃) ₂] has dipole moment equal	t (Zero, normal
F	B- Give one example of the following ligands: i- Binegative bidentate ligand. ii- Neutral bridging ligand. iii- Neutral bidentate ligand form five membered ring. vi- Tridentate ligands. v- Ambidentate ligands.	<u>(10 Marks)</u>
3	3) A- Complete the following reactions: i- $3\text{Co}_3\text{O}_4 + 8\text{Al} \rightarrow \dots + \dots$ ii- $\text{FeCr}_2\text{O}_4 + C$ electric furance iii- VCl_4 $\xrightarrow{\text{H}_2\text{O}}$ iv- $\text{Sc} + \text{NaOH} \rightarrow \dots + \dots$ v- $\text{Sc}_2\text{O}_3 + C$ $\xrightarrow{1000^{\circ}\text{C}}$ $\xrightarrow{\text{H}_2\text{O}}$	(10 Marks)
E	B- Which of the following compounds would be paramagnetic? i- $[Sc(NH_3)_6]^{3+}$ ii- $[Ni(NH_3)_6]^{2+}$ iii- $[Co(NH_3)_6]^{3+}$ iv- $[Fe(CN)_6]^{4-}$	(10 Marks)

4) A- Write briefly on the extraction of <u>Titanium</u> metal from its ores.

(10 Marks)

B- True and false (circulate the correct response):

(10 Marks)

i- T - F Vitamin B12 is a Co²⁺ complex and is used for anemia patients.

ii- T - F Ni metal is passive towards aqua regia.

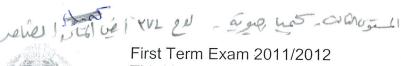
iii- T - F Fehling test is used for detection of sugar in urine by reduction of Cu²⁺ to CuO.

 \mathbf{v} - \mathbf{T} - \mathbf{F} TiO₂ is amphoteric.

vi- \mathbf{T} - \mathbf{F} Fe rusts slowly in air in presence of humidity to Fe_2O_3 .

Best Wishes

Prof. Magdy Bekheit Prof. Nagwa Nawar Prof. Sahar Mostafa


31	133	133	137	1 4 4						
2180	22 T i	2317	2400	25 N.A.	2617	270	28 N.T.	290	30~	٦
SC	. 11			IVIII	re	CO	INI	Cu	Ln	
properties and a record speed or the contract of	TO ME THE MEDICAL PROPERTY AND ADDRESS OF THE PARTY OF TH		1							

Mansoura university Faculty of science **Chemistry Department**

Subject: Biochem.3 74

Course: Water & Minerals

Metabolism

Third Level Biochem Students : 9 Jan. 2011

Time Allowed : 2 hours

Total Mark

: 60 Marks

Answer the following questions Provide your answer with formula, equations, pathways, figures or tables wherever possible

- Q1: A Explain how iron can absorbed, transported and storage between the different organs and tissues. [8 Marks]
 - B- What are the types of respiratory acidosis and respiratory alkalosis? Mention the route of compensation with acute respiratory acidosis?

[6 Marks]

- C- Put ($\sqrt{\ }$) for right sentence and put (X) for wrong sentence: [5 marks]
- 1- Respiratory acidosis is due to decreased ventilation of the pulmonary alveoli, leading to elevated arterial carbon dioxide concentration (PaCO₂).
- 2- Hypercapnia and respiratory acidosis occur when impairment in ventilation occurs and the removal of CO₂ by the lungs is less than the production of CO₂ in the tissues.
- 3- Aldosteroui8ne inhibits both reabsorption of Na⁺ and excretion of K⁺ in the late distal tubule.
- 4- Hyperirritability, means that increased neuromuscular exactability because Mg competitively inhibits the entry of Ca into neuron.
- 5- Mg deficiency should suspected to patients with hypokalaemia and hypocalcaemia.
- A- What is the effect of PTH on phosphorous. Q2: [10 Marks]
 - B- Give THREE examples of iron-sulfur cluster and mention the biological importance for each one [10 Marks]
- Q3: Write briefly on the following: [21 Marks]
 - 1- plasma calcium and hypo- and hypercalcaemia.
 - 2- phosphate binders and function of sodium.
 - 3- causes leading to Hypomagnesaemia.

Prof. A.F. Abdel-Aziz

Mansoura University
Faculty of Science
Chemistry Department
Subject: Biochemistry

Course: Hormones, Biochemistry 372

First Term Examination

3rd Level Students

Date Jan 12, 2012

Time Allowed: Two hours Full Marks: 60 Marks

Answer the following questions:

I. (15 marks)

- a. What is the mechanism of TSH hormone action?
- b. Distinguish between goiter and grave disease. Illustrate your answer with graph.
- c. Write short notes on type of chemical messenger.

II. (20 marks)

- a) What is difference between:
 - i. Lipophilic and hydrophilic hormones.
 - ii. Antagonists and Agonists.
 - iii. Action of epinephrine and insulin on liver cells?
- b) What are the effects of growth hormone on bone growth and metabolism?

III. Write short notes on: (10 Marks)

- a) Activation of PKA.
- b) The Renin-Angiotensin-Aldosterone Pathway.

IV. Choose the best answers: (15 marks, 1 for each)

1. The sequential steps in the conversion of tyrosine to epinephrine are

- (A) Ring hydroxylation-decarboxylation-side chain hydroxylation-N-methylation
- (B) Side chain hydroxylation-decarboxylation-ring hydroxylation N-methylation
- (C) Decarboxylation-ring hydroxylation-side chain hydroxylation-N-methylation
- (D) N-methylation-decarboxylation-ring and side chain hydroxylation

2. The characteristic of hyperparathyroidism is

- (A) Low serum calcium
- (B) High serum phosphorous
- (C) Low serum calcium and high serum phosphorous
- (D) High serum calcium and low serum phosphate

3. Action of insulin on lipid metabolism is

- (A) It increases lipolysis and increases triglyceride synthesis
- (B) It decreases lipolysis and increases triglyceride synthesis
- (C) It decreases lipolysis and decreases triglyceride synthesis
- (D) It increases synthesis of triglyceride and increased ketogenesis

4. Conversion of testosterone to estradiol requires the enzyme:

- (A) Aromatase
- (B) Dehydrogenase
- (C) Lyase
- (D) Isomerase

5. The only correct statement about hormone receptors is

- (A) Receptors for protein hormones are present in cytosol
- (B) Receptors for steroid hormones are membrane bound
- (C) Hormone-receptor binding is irreversible
- (D) Receptors can undergo down regulation and up regulation

6. All the following statements about hormones are true except

- (A) All of them require specific carriers in plasma
- (B) All of them require specific receptors in target cells
- (C) Some of them are subject to feedback regulation
- (D) Some of them increase the transcription of certain genes

7. Secretion of Insulin-like Growth Factor-l is promoted by

- (A) Insulin
- (B) Glucagon
- (C) Growth hormone
- (D) Somatomedin C

8. Acromegaly results from overproduction of

- (A) ACTH during childhood
- (B) TSH during adult life
- (C) Growth hormone during childhood
- (D) Growth hormone during adult life

9. Proopiomelanocortin is the precussor of

- (A) ACTH
- (B) β-tropin
- (C) Endorphins
- (D) All of these

10. Epinephrine causes in muscle:

- (A) Gluconeogenesis
- (B) Glycogenesis
- (C) Glycolysis
- (D) Glycogenolysis

11. Binding of thyroxine to its receptors

- (A) Activates Adenylate cyclase
- (B) Activates guanylate cyclase
- (C) Activates a stimulatory G-protein
- (D) Increases transcription

12. All the following statements about hormones are true except

- (A) All of them require specific carriers in plasma
- (B) All of them require specific receptors in target cells
- (C) Some of them are subject to feedback regulation
- (D) Some of them increase the transcription of certain genes

13. Glucagon

- (A) Increases protein synthesis
- (B) Inhibits lipolysis in adipocytes
- (C) Increases gluconeogenesis in liver
- (D) Stimulates muscle glycogenolysis

14. Epinephrine is rapidly metabolized by

- (A) Monoamine oxidase
- (B) Deaminase
- (C) Transminase
- (D) Decarboxylase

15. In Cushing's syndrome-a tumour associated disease of adrenal cortex, there is

- (A) Decreased epinephrine production
- (B) Excessive cortisol production
- (C) Excessive epinephrine production
- (D) Decreased cortsoil production

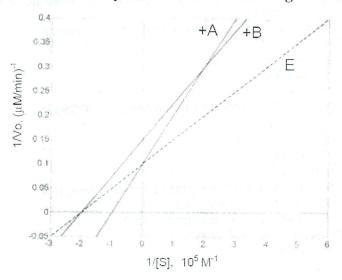
Good luck

Mansoura University
Faculty of Science
Chemistry Department
Subject: Biochemistry

Course Engumes Dischamister

Course: Enzymes, Biochemistry 371

First Term Examination


3rd Level Students

Date Jan 2, 2012.

Time Allowed: Two hours Full Marks: 60 Marks

Answer the following questions

- I. What is the difference between: (20 Marks)
 - a) Enzyme and catalyst.
 - b) Function and non functional plasma enzymes.
 - c) Lock &key and induced fit model.
 - d) Absolute and group specificity.
- II. Now you study enzyme inhibition by measuring enzyme kinetics in the presence of 10 mM of inhibitor A or inhibitor B (separately). The Lineweaver-Burk plots in the presence of these inhibitor are indicated by "+A" or "+B" in the Figure below. (10 Marks)

- a) From these data determine the type of inhibition and effects on Vmax and Km for A and B.
- b) Draw schematically the enzyme kinetic plots (in coordinates Vo vs. [S] on the graph) in the presence of inhibitors A and B.
- c) Give example for inhibitor A.
- d) Mention how can be used enzyme inhibitor as antitumor drug.

III. Write short notes on: (20 Marks)

- a) Covalent modification.
- b) Sequential order reaction.
- c) Restriction enducleases enzymes.
- d) Effects of temperature on enzyme activity

IV- Choose the best answer: (10 Marks, 1 for each)

- 1. Serum alkaline phosphatase level increases in
 - (A) Hypothyroidism
 - (B) Carcinoma of prostate
 - (C) Hyperparathyroidism
 - (D) Myocardial ischemia

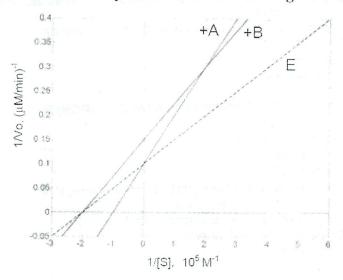
2.	Coenzymes comb	ine with			
	(A) Proenzyme				
	(B) Apoenzym				
	(C) Holoenzym				
	(D) (D) Antienz				
3.		ition can be relieved I	by raising the		
	(A) Enzyme con				
	(B) Substrate c (C) Inhibitor cor				
	(D) None of the				
4.		/IB is specifically incr	eased in the bloo	d of patients who	ha
5.5	(A) Skeletal mu	scle disease	ouddu iii tiid bidd	a or patiente with	, ma
		cardial infarction			
	(C) Infective he	patitis			
	(D) Myxoedema				
5.		to K _m , which of the fo		s exist?	
		yme molecules are bou			
		of the reaction is equa			
	(D) Enzyme is o	of the reaction is indep	pendent of substra	e concentration	
6.		concerned with transf	er of electrons?		
•	(A) Desmolase	Joneon Ca With transi	ci di dicoti dila.		
	(B) Hydrolase				
	(C) Dehydroger	ase			
	(D) Transamina	se			
7.		in polymerase chain i	eaction (PCR) is		
	(A) Taq polyme				
	(B) (B) RNA pol	-			
	(C) Ribonucleas				
8.	(D) (D) Endonud	ic group) is a part of	holoonzyme it is	*	
0.		rt loosely attached	noidenzyme, it is		
		on-protein substance a	ttached firmly		
		attached loosely			
	(D) None of thes				
9.	Urease is a				
	(A) Lyase				
	(B) (B) Ligase				
	(C) Isomerase				
	(D) (D) Hydrolas	e			
10.	The enzymes that	catalyze reactions 1, 2	2, and 3, respective	vely are called:	
		XYYX			
	A+B↔A-B		A-B+H ₂ 0↔A	∖- H +B-OH	
		A-B↔A-B	and Angles and		
	(1)	(2)	(3	3)	
	A) ligase, transferas				
	B) ligase, isomerase				
	C) ligase, lyase, hyd				
	D) transferase, lyase	e, nydroiase erase, oxidoreductase			of the second
	L) (10113101030, 13011	Grase, Unidoreductase			

Good luck

Mansoura University
Faculty of Science
Chemistry Department
Subject: Biochemistry

Course: Enzymes, Biochemistry 371

First Term Examination


3rd Level Students

Date Jan 2, 2012.

Time Allowed: Two hours Full Marks: 60 Marks

Answer the following questions

- I. What is the difference between: (20 Marks)
 - a) Enzyme and catalyst.
 - b) Function and non functional plasma enzymes.
 - c) Lock &key and induced fit model.
 - d) Absolute and group specificity.
- II. Now you study enzyme inhibition by measuring enzyme kinetics in the presence of 10 mM of inhibitor A or inhibitor B (separately). The Lineweaver-Burk plots in the presence of these inhibitor are indicated by "+A" or "+B" in the Figure below. (10 Marks)

- a) From these data determine the type of inhibition and effects on Vmax and Km for A and B.
- b) Draw schematically the enzyme kinetic plots (in coordinates Vo vs. [S] on the graph) in the presence of inhibitors A and B.
- c) Give example for inhibitor A.
- d) Mention how can be used enzyme inhibitor as antitumor drug.

III. Write short notes on: (20 Marks)

- a) Covalent modification.
- b) Sequential order reaction.
- c) Restriction enducleases enzymes.
- d) Effects of temperature on enzyme activity

IV- Choose the best answer: (10 Marks, 1 for each)

- 1. Serum alkaline phosphatase level increases in
 - (A) Hypothyroidism
 - (B) Carcinoma of prostate
 - (C) Hyperparathyroidism
 - (D) Myocardial ischemia

2.	Coenzymes combine with						
	(A) Proenzymes						
	(B) Apoenzymes						
	(C) Holoenzymes						
	(D) (D) Antienzymes						
3.	Competitive inhibition can be relieved l	by raising the					
	(A) Enzyme concentration						
	(B) Substrate concentration						
	(C) Inhibitor concentration						
4.	(D) None of these The isozyme CK-MB is specifically incr	assed in the blood of natio	nte who had				
٦.	(A) Skeletal muscle disease	eased in the blood of patie	ints who had				
	(B) Recent myocardial infarction						
	(C) Infective hepatitis						
	(D) Myxoedema						
5.	When [s] is equal to Km, which of the fo	llowing conditions exist?					
	(A) Half the enzyme molecules are box	und to substrate					
411	(B) The velocity of the reaction is equa						
	(C) The velocity of the reaction is indep	pendent of substrate concen-	tration				
C	(D) Enzyme is completely						
6.	Which enzyme is concerned with transf (A) Desmolase	er of electrons?					
	(B) Hydrolase						
	(C) Dehydrogenase						
	(D) Transaminase						
7.	The enzyme used in polymerase chain	reaction (PCR) is					
	(A) Taq polymerase	,					
	(B) (B) RNA polymerase						
	(C) Ribonuclease						
	(D) (D) Endonuclease		ter				
8.							
	(A) Inorganic part loosely attached						
	(B) Accessory non-protein substance a	ittached firmly					
	(C) Organic part attached loosely						
0	(D) None of these						
9.	Urease is a (A) Lyase						
	(B) (B) Ligase						
	(C) Isomerase						
40	(D) (D) Hydrolase						
10.	The enzymes that catalyze reactions 1,	2, and 3, respectively are c	alled:				
	XYYX						
	A+B↔A-B	A-B+H ₂ 0↔A-H +B-OI	Н				
	A-B↔A-B	7(3)1120(7)(11.5.6)	in a second				
	(1) (2)	(3)					
	A) ligase, transferase, oxidoreductase						
	B) ligase, isomerase, hydrolase						
	C) ligase, lyase, hydrolase						
	D) transferase, lyase, hydrolase						
	E) transferase, isomerase, oxidoreductase						

Good luck