Mansoura Univ.

Second Term

Fac. Of Sci., Chem. Depart.

Fourth year chemistry

Subject:Chemistry

level 4, Date, 30-6-2012

Courses:Org. Chem. 436

Time, 2 hrs, Full mark, 80 marks

Polymer chemistry exam

- 1-(a) Write short notes on three only of the following topics.(3x 8 marks)
 - (I) Conversion of functional groups.
 - (ii)Polycondensation and stepwise polymerization.
 - (iii)Preparation of syndiotactic polypropylene by bimetallic Ziegler

 Natta catalysts .
 - (iv) Emulsion polymerization .
 - (b) Explain two methods for determination of number average molecular weight .(10 marks).
- 2-(a) Describe the mechanism of polymerization when using the following initiators KNH2 , TiCl3C2H5 and H2SO4 in preparation of different polymers.(11 marks)
 - (b) Give a brief account on the advantages of the copolymerization process and explain the kinetics of the free radical vinyl copolymerization. (15 marks).
- 3-(a) Complete the following sentences (5 x 1.5 mark).
 - (I) Azeotropic copolymerization equation is -----.

(iv) The equation that relates osmotic pressure and Mn is ------

1	v	when $r1 = r2 = 0$, the copolymerization equation is
и	W	VALICITITE IZ - O	, the copolymenzation education is

- (I) Vinylchloride gives anionic polymerization. ().
- (ii)Acrylonitrile gives cationic polymerization. ().
- (iii) Acrylamide gives Ziegler Natta polymerization. ().
- (iv) When Mw = Mn the polmer is highly distributed .().
- (v) polypropene has Tg under zero temperature. ().
- (c) Write only on two of the following subjects. (7.5 marks).
- (I) Polymerization of conjugated diene .(4.5 marks).
- (ii) Glass transition temperature (Tg) of polymers .(3 marks).
- (iii) Mechanism of inhibitors . (3 marks).

Best wishes

المديد المسعب المارم

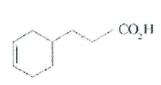
Mansoura University
Faculty of Science
Department of Chemistry

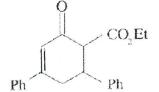
Eighth Semester Date 23-06.2012 Time: Two Hours Full Mark (60)

Exam. of Course 435(Organic Chemistry) (Organic Chemistry-2) For 4th Level Chemistry Students

- 1- A- What are the criteria for useful bond disconnections?
 - B- How would you make the following target molecules:

i-


ii-


2- A- Design a logical synthesis for:

$$\times_{0}^{0}$$

- B- Draw out the forward synthesis of 4-phenyl-2-butanone?
 - 3- A- Disconnect the following compounds to their synthons and suggest a synthesis for each one:

i-

B- Based on the umpolung strategy, explain benzoin condensation.

Good Luck

Prof. Dr. Mohamed Abbas Metwally

252 d'appliel , qui, juy colod, , mat & l'ou 1

Mansoura University Faculty of Science Chemistry Department Subject: Chem. (424) Inorganic Chemistry

Second Term B.Sc. Students Date: 12/06/2012 Time Allowed: 2 hrs

Answer the following questions

Electronic Spectra and Magnetochemistry

Answer the following questions:-

(Total Marks 80)

1- Put $(\sqrt{})$ or (X) for the following:-

(24 Marks)

- i- Colorimeter is used to measure the electronic spectra in the 200-1000 cm⁻¹ range.
- ii- The intensity of magnetization equals the magnetic per area.
- iii- The energy of IR includes rotational, vibrational and electronic transitions.
- iv- 1Å equals 10⁻¹⁰ cm.
- v- The volume susceptibility is the ratio of I/B.
- vi- The charge-transfer in case of HgI_2 is of the type $L \rightarrow M$.
- vii- The ampltiude is used to deferenciate between electromagnetic radiations.
- viii- Permiability equals B/I.
- ix- B equals $eh/4\pi mc^2$.
- x- The difference between spin-orbital couplings equals BH.
- xi- $n \to \pi^*$ transition is higher in energy than $\pi \to \pi^*$.
- xii- [Cu(H₂O)₆]Cl has a regular octahedral structure.
- xiii- Spin-orbital coupling represents 2S+1.
- xiv- Zr⁴⁺ salts are easily reduced than Ti⁴⁺.
- xv- Fe²⁺ reacts with 1,10-phenthroline forming a red color.
- xvi- MnO₄ ion has a deep violet color.

2-- Write short notes on the follwing:

(28 Marks)

- i- Effect of Russell-Saunders in case of P² system.
- ii- Determination of magnetic moment using the turnning magnet.
- iii- The relation between ε and selection rules.
- iv- Racah parameters.
- v- Counter-ion spectra.
- vi- Mullikan symbols.
- vii- Calculation of number of microstates.

3- Comments on the following:

(16 Marks)

- i- The broadness of the d-d band in case of d-block metal complexes.
- ii- The value of orbital magnetic moment equals half the value of spin magnetic moment.
- iii- $[Ti(H_2O)_6]^{3+}$ has three transition states.
- iv- The effect of π -bonding on the value of Δ .
- 4- Determine the ground term and the magnetic moment for the following: (12 Marks).
 - i- $[Cr(H_2O)_6]Cl_2$ (At. No. = 24).
 - ii- $[Fe(NH_3)_6]Cl_3$ (At. No. = 26).
 - iii- $[CuCl_2]$ (At. No. =29).
 - iv- $[[Co(CN)_6]^{3-}$ (At. No. = 27).

Good Luck

Prof. Mohsen M. Mostafa

Mansoura University
Faculty of Science
Chemistry Department
Subject: Mechanism of Inorganic
Substitution Reactions
Course Symbol: 423 Chem

Chemistry Students
Exam date: 09.06.2012
Allowed time: 2 hours
Total marks= 80
Level: 4th

Final Exam for 4th Level Chemistry Students

Answer the Following Questions:					
1-I) Write short notes on the following: -	(10 Marks)				
a) Labile complexes.	C Simple All Colo				
b) Garrick's explanation for S _N 1 dissociation mechanism of base of [Co(NH ₃) ₅ Cl] ²⁺ .	hydrolysis reaction				
II) Show how the trans- effect can be used to distinguish between cis	s- and trans- isomers of				
$[PtA_2X_2]^0$ type complexes (A=NH ₃ or amine, X=Cl ⁻).	(6 Marks)				
2) Complete the following statements:-	(14 Marks)				
a) According to Orgel, the formation ofbond between	andligand,				
L the stability of thecoordinated state com	plex. Thusthe				
activation energy for its formation andup the reaction.					
b) Substitution reactions in Pt (II) square planar complexes proceed mechanism involving eitheror theligand as the nucleon					
c) Electron-transfer reactions occur by two mechanisms;	or and				
oror					
#256.0 M Target store (*					
3) Give the possible mechanism for two only of the following reacti					
a) $[Co(NH_3)_5Cl]^{2+} + [Cr(H_2O)_6]^{2+} + 5H_3O^+ \longrightarrow [Co(H_2O)_6]^{2+} + [Cr(H_2O)_6]^{2+}$	$H_2O)_5Cl]^{2+} + 5NH_4^+$				
b) $[Co(NH_3)_5CO_3]^+ + H_3O^+ \longrightarrow [Co(NH_3)_5H_2O]^{3+} + H_2O + CO_2$					
c) Cis $[PtA_2LX] + Y \longrightarrow Cis \& trans-[PtA_2LY] + X$					
4) True and false (circulate the correct response):	(12 Marks)				
a) $T - F$ S _N 1CB and S _N 2 displacement mechanisms follow the same rat	,				
hydroxo product.	8				
b) T - F Substitution reactions of Pt(II) square planar complexes are not	t stereo-specific				
c) T- F Polarization theory explained the trans effect of groups such as CO, NO and PR3.					
d) $T - F$ Substitution on ethylene diamine in $[Co(NH_3)_5Cl]^{2+}$ complex					
	makes the reaction				
to proceed by S _N 2 association mechanism.					
4) Arrange the following in the order of increasing the property indindicating the reasons if it is possible	dicated in brackets (20 Marks)				
a) $[Co(NH_3)_4Cl_2]^+$ & $[Co(NH_3)_5Cl_1]^{2+}$.	(Rate of aquation)				
b) Cis [Co(en) ₂ Cl ₂] ⁺ & [Co(trien)Cl ₂] ⁺ . c) [Pt(Py) ₂ Cl ₂] + ³⁶ Cl (in H ₂ O, DMSO and ROH).	(Rate of aquation)				
c) $[Pt(Py)_2Cl_2] + {}^{36}Cl$ (in H ₂ O, DMSO and ROH).	(Rate of substitution)				

iv) trans
$$\begin{bmatrix} PEt_3 \\ L Pt CI \end{bmatrix}$$
 + Py $\underbrace{25^0C}_{EtOH}$ trans $\begin{bmatrix} PEt_3 \\ L Pt Py \end{bmatrix}$ + Ci PEt₃

L= H, methyl, phenyl, p-methoxy phenyl

- a) (Trans directing ability of the group).
- b) K_1 and $K_2(min^{-1})$

v)
$$\begin{bmatrix} CI \\ H_3N - Pt & CI \\ (2) \\ CI \end{bmatrix}$$
 &
$$\begin{bmatrix} Br \\ H_3N - Pt & Br \\ (2) \\ Br \end{bmatrix}$$
 (a) (b)

- i) Bond length of bond(1):....>
- ii) Bond length of bond (2):.....>

With Best Wishes
Dr.O.El-Gammal

Chemistry Department Faculty of Science Mansoura University Date: 5th June 2012 Time: 2 hours Marks: 80

<u>Final Exam in Symmetry and Group Theory for Fourth Level Chemistry Students</u> (Chem 422)

Answer The Following Questions

1- BH₃ has point group while B(OH)₃ point group is; Please draw both 2- CCl₄ has geometry,...... elements of symmetry and point group, which makes it (low – high) degree of symmetry molecule 3- is an example of Cs point group; please draw

- 4- $[PtCl_4]$ has (square-planar tetrahedral) geometry and $(C_3 C_2 C_4)$ axes of rotation
- 5- CO_3^{2-} has geometry and $(C_{3v} D_{3h})$ point group; Please draw.

2)Please name the symmetry elements and point groups of each of the following molecules:- (15 marks)

1) CS₂

2) cis-[Pt(NH₃)Cl₂]

3) SO₂

4) $H_2C=C=CH_2$

5) CH₂Cl₂

6) HBr

3) Choose the most correct answer:- (10 marks)

1)Complete or choise in the following: (25 marks)

- 1) [NiCl₄]²⁻ point group is
- a) C_{4v}
- b) C_{4h}
- c) D_{4h}
- d) D_{4v}
- e) T_d

2)) Symmetry operations of NH ₃					
a) C ₃ , σv	b) E, C ₃ , i	c) Ε, C ₃ , σν	d) E, 2C ₃ , 3σv	e) Ε, 2C ₃ , σν		
3)	is belonged to D	_{∞h} family				
	b) H ₂ O	c) N ₂ O ₄		e) a & c		
4) B_2H_6 is						
a) linear mol	ecule b) C ₂	c) D _{2h}	d) a & b) b & c		
5) Acetone ha	as	2 700				
a) E	b) σh	c) C ₂	d) a &c	e)a&b&c		
4) True and Faulse; circulate the suitable response and please correct the false one (10 marks)						
1-T - F	Water molecule has	two vibration modes;	are IR and Raman in	nactive		
2-T - F	C2v point group mol	lecule has 6 character	rs			
3-T - F	Reducible representa	ation of identity (E) is	: -1			
4- T - F	NH ₃ has point group	of D_{3h}				
5- T - F	Number of non-shift	ed atoms in SO ₂ thro	ugh C2 are 2			
6- T - F	Degree of freedom in	both trans-H ₂ O ₂ and	$1 N_2 O_2$ are 6			
7-T - F	Trans-UO ₂ (AcO) ₂ ha	as $v_{asy}(UO_2)$, which is	active IR and Raman	1 12/-1/7/5		
*	l poci l		400			
	ecules POCl ₃ and ci	s-H ₂ O ₂ ; Please find	(20 marks)			
a) Symmetry	•					
b) Total num	ber of operations (Cha	aracters)				
c) Reducible	e) Reducible and irreducible representations for each symmetry representation					
d) Number of) Number of vibration motions					
You are provid	ou are provided with the character tables					

Table 1: C2V

C_{2v}	E	C2		
$\overline{A_1}$	1		σ_{xz}	σ_{y}
Filek	1	1	1	1
\mathbf{A}_2	1	1		1
D		1	-1	-1
\mathbf{B}_1	1	-1	1	
\mathbf{B}_2	1		1	-1
	1	-1	-1	1

Table 2: C_{3V}

C_{3v}	E	C_3	σ
A1	1	1	1
A2	1	1	-1
E	2	-1	0

Mansoura University	-3111/1/2	B.Sc. Students (Chem.)		
Faculty of Science	5	Date:	26 June 2012	
Physical Chemistry Dept.		Time Allowe	d: (2 hours)	
Course no. (Chem. 443)	The state of the s	Full Mark:	(80 Marks)	
Molecular Spectroscopy Final Exam	J	Prof. Dr. A.A	. El-Khouly	

Answer the following questions:

- 1- Calculate in e.v. the (E) of absorption of an $100 \, \eta m$ U.V. radiant & also its wavenumber; if its wavelength becomes $10^{-6} \, m$. (13 Marks)
- 2- Illustrate & describe 2 types only of pure rotation spectra. (13 Marks)
- 3- Write a full comparison between a Band & Line Spectra. (13 Marks)
- 4- Explain the Vibrational Spectra of CO₂ molecules including its stretching (Symm. & Asymm.) & its bending modes. (13 Marks)
- 5- Discuss the differences between microwave-active & infrared- active molecules referring to some examples of each. (13 Marks)
- 6- Integrate & explain mathematically the moment of Inertia (I) & the rotational kinetic energy (E_K) of a rigid-system (dumbell-shaped model) i.e. diatomic molecules. (15 Marks)

Best wishes

Prof. Dr. / A.A. El-khouly