ECT 50 je aulipie CV, by - Chiply - 2/1 (5-1)

Mansoura University
Faculty of Science
Mathematics Department
Final examination

Partial differential equation (Math429) Date 23-6-2012 Fourth level Mathematics Full marks 80

Second term 2011-2012 Time Alowed Two Hours Date 23-6-2012 Full marks 80

Answer the following questions:

Question One:

(20 marks)

Prove that the solution of

$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}, for - \infty < x < \infty$$
with $Ics: u(x,0) = \varphi(x)$ and $u_t(x,0) = \psi(x)$
is:

$$u(x,t) = \frac{1}{2} \left[\varphi(x+ct) + \varphi(x-ct) \right] + \frac{1}{2c} \int_{x-ct}^{x+ct} \psi(s) ds$$

Question Two:

(20 marks)

Solve

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2},$$

$$BCs \ u(0,t) = 0 \ and \frac{\partial u}{\partial x}(1,t) = 0$$

Question Three

(20 marks)

Solve
$$u_{tt} = c^2 u_{xx} - ru_t$$
, with Dirichlet BC's:

Ouestion Four

(20 marks)

a- Prove that if $x=r\cos\theta$, $y=r\sin\theta$, then

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0$$

b- The Cartesian coordinates $(x, y) \in \mathbb{R} X \mathbb{R}$ and polar coordinates are

related by

 $x = r \cos \theta$, $y = r \sin \theta$.

Transform the equation $xu_y + yu_x = 0$ to the polar coordinates and then solve it (find a general solution)

ECT ible, alie a Gineol . Ella !!

Mansoura University Faculty of Science Mathematics Department

Final exam Second term May 2012

4th level students (Mathematics / Statistics and computer Science programme) Subject: Math 426 (Modelling and Simulations)

Date: 19 /06/2012 Time allowed: Two hours

Answer the following questions:

Total marks: 80

Question one:

- A) Define the following concepts: Logistic growth predation competition mutualism. Give a discrete-time model for each of the first two concepts and a continuous-time model for each of the other two. (10 marks)
- B) Consider the following Volterra model for fish:

$$\frac{dU}{dt} = \alpha U - p EU - \gamma U V, \qquad \qquad \frac{dV}{dt} = e \gamma U V - q EU - \beta V$$

where p and q are the catchability coefficients for the prey U and the predator V, respectively, and the fishing takes place with constant effort E. Explain the model, find the steady states and discuss their stability. (10 marks)

Question two:

A) Define the basic reproduction number.

(5 marks)

B) Construct an SIR model for an infection spreading in a closed population with constant size and study the possibility to vaccinate a proportion p of the newborns and then find the critical vaccination coverage level required to eliminate the infection. (15 marks)

Question three:

- A) Write down both the von Bertalanffy and Gompertz models for the tumour (5 marks)
- B) Prove that in a large spherical tumour there is a shell of proliferating cells, whose thickness depends on the excess nutrient concentration above a threshold $(c_2 - c_1)$, how fast the nutrient is consumed k and how fast it diffuses D according to the relation $h^2 = 2D(c_2 - c_1)/k$, but not on the size of the tumour itself. (15 marks)

Question four: (20 marks)

Assume that p(a,t) is the age-specific density of individuals aged a at time t in a demographically stationary population, $\mu(a)$ is the per capita age-dependent death rate as well

as the per capita age-dependent birth rate and $B(t) = p(0,t) = \int_{-\infty}^{\infty} \mu(a)p(a,t)da$ is the total

number of births at time t. Write down the age-dependent model that describes the population dynamics and use the method of characteristics to find p(a,t).

> Best regards, The examiner Dr. Muntaser Safan

الفصل الثاني يونيو 2012	المستوى الرابع	جامعة المنصورة
الزمن: ساعتان	شعبة رياضيات	كلية العلوم
الدرجة الكلية 80	المادة: ميكانيكا متقدمة	قسم الرياضيات

أجب على الأسئلة التالية:

1) أ- أثبت أن عزوم قصور جسم حول أى محاور متعامدة متقاطعة فى نقطة تحقق متباينات المثلث.

ب- عرف زوايا أويلر وعين بدلالتها متجه السرعة الزاوية منسوبا لمجموعة المحاور xyz المثبتة في الجسم.

ج - استنتج تعبيرا عن كل من طاقة الحركة وكمية الحركة الزاوية للجسم المتماسك حـول نقطة ثابتة منسوبة لمحاور ثابتة في الجسم.

2) أ- اكتب معادلات الحركة لجسم متماسك مثبت من نقطة ويتحرك تحت تأثير وزنه.

ب- أوجد التكاملات الأولى العامة للحركة، مبينا علة وجود كل منها.

ج- أوجد التكامل الرابع في حالة كوفاليفسكايا.

د - اذكر مع الإثبات تفسير بوانسو الهندسي لحركة الجسم المتماسك في حالة أويلر.

3) بندول بسيط مكون من ثقل مثبت فى قضيب خفيف طوله 1 أزيح عن وضع انزانه المستقر حتى أصبح أفقيا ثم ترك ليتحرك من سكون. عبر عن وضع الثقل بدلالة الزمن و أوجد الزمن الدورى للحركة.

4) أ- جسم متماسك له محور تماثل ومثبت من نقطة على هذا المحور ويتحرك تحت تأثير وزنه . اكتب معادلات الحركة وأوجد التكاملات الأولى للحركة.

ب- بين أن مسألة الحركة في هذه الحالة يمكن حلها باستخدام الدوال الناقصية.

ج- إذا وضع الجسم بحيث يكون مركز كتلته رأسيا أعلى النقطة الثابتة فأوجد أقل سرعة زاوية تعطى له حول محوره بحيث يصبح وضع مركز الكتلة مستقرا.

درجات الأسئلة متساوية (20)

أستاذ المادة : أ. د. حمد حلمي يحيي

(300,) all amil - 6 hipl, &

Mansoura Univ.

Faculty of Science

Mathematics Dept.

Subject: Math.

Course General relativity 422

4thYear: math.

Date June 2012

Time: 2 hours

Full marks: 80

Answer the following questions:

- [1] i) Why classical mechanics is not applicable to light. State special relativity principles. Derive Lorentz transformations. Derive length contraction, time dilation and apply them to the miu meson phenomena in cosmic rays.

 [20 marks].
- [2] State Schwarzschild metric. Study bending of light ray.
 [20 marks].
- [3] i) State cosmological principle. State Freedman-Robertson-Walker metric hence derive Hubble's law.
- ii) Solve the cosmological models for the following cases: Static, and k=-1 cases. State their agreement with observations. $0=kc^2+R^{-2}+2RR^{-1}$. [20 marks].
- [4] i) Write a short notice on Quasars. Can a quasar exist in our galaxy? justify your answer.
- ii) If you see a blue star, what is its true color? Justify your answer.
- iii) Can special relativity be applied on earth? Justify your answer. [20 marks].

كلية العلوم

الفرقة: المستوى الرابع

الشعبة: رياضيات المادة: ر١٧ تحليل مركب (٢) (خ)

Answer the following questions:

1. a. Prove that if f(z) has a pole of order m at $z = z_0$. Then

Res[f,z₀] =
$$\lim_{z \to z_0} \frac{1}{(m-1)!} \frac{d^{(m-1)}}{dz^{(m-1)}} [(z-z_0)^m f(z)]$$
 (10 marks)

b. Evaluate
$$\int_{-\infty}^{\infty} \frac{\sin x}{x^2 - 2x + 2} dx$$
 (10 marks)

- 2. a. Define zero of order m for f(z). Prove that the zeros of an analytic function which is not identically zero are isolated. (5 marks)
 - b. Let f(z) be an analytic function inside and on C+ (simple closed contour) except possibly for poles interior to C. Also let f have no zeros on C. Then prove that

$$\frac{1}{2\pi}A_{c} \operatorname{arg} f(z) = N - P,$$

where N and P are the number of zeros and poles of f(z).

(10 marks)

- c. Describe a Riemann surface for the multiple-valued function $w = z^{\frac{1}{4}}$. (5 marks)
- 3. a. Under the transformation $w = \sqrt{2}e^{i\frac{\pi}{4}}z + (2-3i)$, find the image of R: x = y = 0, x = 2 and y = 1 in the w-plane. (10 marks)
 - b. Prove that under $w = \frac{1}{x}$ straight lines and circles are mapped onto straight lines

or circles. Find the image of x + y - 2 = 0 and x - y + 2 = 0 under $w = \frac{1}{x}$.

(5 marks)

c. Define analytic continuation of f(z).

(5 marks)

- 4. a. Let a function f(z) be analytic in a domain D that includes a segment of the x-axis and is symmetric to the x-axis. If f(z) is real whenever x is a point on that segment. Then prove that $f(z) = \overline{f(z)}$, $z \in D$. Prove also if this condition is satisfied then f(z) is real.
 - b. Prove that $f(z) = \sin z$ is not bounded. Find the image of $x = c(c \neq \frac{\pi}{2}k, k)$ integer) under $w = \sin z$.

اسم الممتحن: أ.د./ محمد كمال عبدالسلام عوف

512/ 05/2 1/5 - - well ellings

دور مايو 2012 الزمن: ساعتان التاريخ: ٢/٦/2012

الشعب : ۱. إحصاء و حاسب ۲. رياضيات. المادة: تحليل دالي در ١٤٤

Answer the following questions:

[1] First: Objective Question: (20 marks)	and comment of the co
Among the following statements mark the true and false ones with $(\sqrt{\ })$ and (\times) respectively. Justify your answer for <u>ONLY TWO</u> of them:	
$\text{of the first of the first$	CONTRACTOR OF THE CONTRACTOR O
(a) If (α_n) , $(\beta_n) \in \ell^4$, then $\sum_{n=1}^{\infty} \alpha_n \beta_n \le \left(\sum_{n=1}^{\infty} \alpha_n ^4\right)^{\frac{1}{4}} \cdot \left(\sum_{n=1}^{\infty} \beta_n ^4\right)^{\frac{1}{4}} \cdot \dots (1)$	
(b) The sequence $\left(\frac{(-1)^n}{\sqrt[3]{n}} \right)$ belongs to ℓ^2 ()	
(c)The dual space E [*] of a normed space E is a Banach space()	
(d) For a set $A = \{x_1, x_2,, x_n\} \subset \ell^{\infty}$, the linear hull $H(A)$ is a separable space()	
(e) Any two linearly isometric normed spaces are linearly homeomorphic()	
 (f) The space ℓ⁴ is linearly homeomorphic to the space K⁴	
(j) If A is a closed subset of a Hilbert space H, then $A = (A^{\perp})^{\perp}$ ()	
	na delp stop store time vivel nice kinsi milet
Second: Subjective Questions (20 marks each)	e susant territoria
[2] a. Let X be a metric space , $\Phi \neq A \subset X$ and $x \in X$. Prove that $x \in \overline{A}$ if and only if there sequence (a_n) in A with $\lim a_n = x$. [8 marks] b. If T is linear transformation of a normed space E into another F, prove that the following statements are equivalent: [12 marks] (i) T is continuous on E; ; (ii) T is continuous at the origin; (iii) T is bounded.	MACCAIN
[3] a. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the mapping defined as follows: $T(a,b,c) = (b+c,c+a,a+b)$, for $x = (a,b,c) \in \mathbb{R}^3$. Show that $T \in L(\mathbb{R}^3)$ and deduce that $ T = 2$. [8 marks]	411
b. If E is a finite-dimensional normed space, show that:	
(i) E is a Banach space; [4 marks]	
(ii) Any linear transformation $T: E \to F$ is bounded (F; being	
any normed space) [8 marks]	
[4] a. State and prove Schwarz' Inequality for inner product spaces. b. Prove that if A is a closed subspace of a Hilbert space H, then	
$\mathbf{H} = \mathbf{A} \oplus \mathbf{A}^{\perp}$. [10 marks]	

El-Mansoura- Egypt	Final Exam. of 2 nd term 2012.	ية لأشطال المنصورة - مصر
Mansoura University	Program: 4 th year.	جامعة المنصورة
Faculty of Science	Statistics and Computer Science Subject: Graph Theory - Course Code: 412	كلية العلوم قسم الرياضيات
Mathematics Department Answer the following questions		Marks
- Find each of:		
(i) All simple graphs with 4	vertices.	4
	emponents, 10 vertices having:	4
(a) maximal nur	nber of edges. (b) minimal number of edges.	
(iii) An example of a connecte	ed graph with $2 n (n \ge 2)$ vertices and no triangles and	l having: 4
(a) Maximal nun	nber of edges. (b) Minimal number of edges.	
(iv) All nonisomorphic trees	with 5 vertices.	4
(v) (a) Find the maximal n	umber of arcs $ E(D) $ of an oriented digraph D w	vith <i>n</i> vertices . 4
(b) Find a regular grap	oh G of order 1 with 2 n vertices.	
Prove.		
	between v_0 and v_n in a graph G , then there is a path be	etween them. 5
	mplete graph K_n , then $K_n - v$ is the complete	5
	now that K_n is not bipartite, $\forall n \geq 3$.	
	graph with <i>n</i> vertices, then	5
G or G^c has a triang	le for each $n \ge 6$.	
(iv) In any graph the numb	er of vertices of odd degrees is even.	5
- (i) Give the definition of	a maximal planar graph. Let $G = (V, E)$ be a maxima	al planar graph 10
with $ \mathbf{V} = n$ and $ \mathbf{F} $	$= m$. Prove that $m = 3n - 6$. and then show that K_5	is not planar.
(ii) Give the definition of the	the rooted tree $T(v_0)$ and prove that indeg $v = 0$ or 1	10
for each vertex v	of T. And then use the rooted binary tree to sort and	
read the following		
"Please help me a	alphabetize the following list of words".	
(i) Let $T = (V, E)$ be a tree	with n vertices and u , v be two non-adjacent vertices.	7
	recisely one cycle C . If e is an edge of C , then the gradual C	aph
T + u v - e is once again	a tree.	
	regular of degree $2 \Leftrightarrow$ each component of G is a cycle	e 7
	ar graph of degree 2 with two components.	
(iii) Define the adjacency ma represents the number of	trix A of a digraph D . Prove that the entry b_{ij} of A^2 all diwalks of length 2 from the vertex v_i to the vertex	6 x <i>v_j</i> .
		Total = 80
Good luck. Dr. M. H. Armanious		I otal - ov

Dr. M. H. Armanious

Mansoura University

30-6-2012

Faculty of Science

Course: OR

Undergraduate (4nd year exam)

Time:2Hours

Answer the following questions

No. of Questions:4

Total Mark:75

Question:1

<u>(20 marks)</u>

(a) If it is possible solve the following mathematical models by using the graphical method.

Minimiz
$$Z = 2x_1 + 3x_2$$
 Minimiz $Z = 2x_1 + 3x_2$ subject to $x_1 + x_2 \ge 5$ $2x_1 + 4x_2 \le 8$ $x_1, x_2 \ge 0$ $x_1 + x_2 \le 8$ $x_1, x_2 \ge 0$ $x_1, x_2 \ge 0$ $x_1, x_2 \ge 0$ $x_1, x_2 \ge 0$ (iii) $X_1 + X_2 \le 8$ (iii) $X_1 + X_2 \le 8$ $X_2 \ge 0$ (iii) $X_1 + X_2 \le 8$ $X_2 \ge 0$ $X_3 \ge 0$ $X_4 \ge 0$ (iii) $X_1 + X_2 \le 6$ $X_2 \le 0$

(b) Express the following L.P in the standard form:

 $x_1, x_2 \ge 0$

Maximize
$$Z = 4x_1 + 2x_2 + 6x_3$$
,
subject to $2x_1 + 3x_2 + 2x_3 \ge 6$
 $3x_1 + 4x_2 = 6$
 $6x_1 - 4x_2 + x_3 \le 10$
 $x_1, x_2, x_3 \ge 0$

Question:2

(20 marks)

(a) Use The big M-method to solve

Maximize
$$Z = 3x_1 + 8x_2$$
subject to
$$x_1 + 3x_2 = 20$$

$$x_1 \le 8$$

$$x_2 \ge 6$$

$$x_1, x_2 \ge 0$$

(b) Construct the dual to the primal problem
$$7 - 3x + 10x_2 + 2x_3$$
,

Maximize
$$Z = 3x_1 + 10x_2 + 2x_3$$
,
subject to $2x_1 + 3x_2 + 2x_3 \le 7$
 $3x_1 - 2x_2 + 4x_3 = 6$
 $6x_1 - 4x_2 + x_3 \ge 10$
 $x_1, x_2, x_3 \ge$

Question:3

(20 marks)

Find the initial feasible solution to the following transportation problem by:

- north-west corner rule, (i)
- Minimum cost rule, (ii)
- Vogel's approximation method (iii) To

4 3 2 1 Supply 6 7 11 3 2 1 From 1 1 6 0 2 1 10 9 15 8 5 3 2 3 5 7 Demand

(15 marks)

Question:4

Solve the following assignment problem:

T	П	III	IV	V
10	5	9	18	11
	9	6	12	14
3	2	4	4	5
18	9	12	17	15
11	6	14	19	10
	1 10 13 3 18 11	13 9 3 2	10 5 9 13 9 6 3 2 4 18 9 12	I II III IV 10 5 9 18 13 9 6 12 3 2 4 4 18 9 12 17

WITH THE BEST WISHES