فيرار - فيرنا د وريه في بان

University of Mansoura Faculty of Science Physics Department Subject: Physics

First Term

Sophomore Students Date: Dec. 26, 2012

Time allowed: 2 hours

Course (s): Phys 213

Nuclear Physics

Full Mark: 80

Answer the Following Questions

- 1-a) Give an idea about the structure of the charge on the proton and the neutron which explain in the anomalous value of the proton and neutron magnetic moments. (7 marks)
- b) Give the difference between the neutrino and anti-neutrino. (7 marks)
- c) Give an account about one of the detectors.

(7 marks)

- 2- Consider the successive decay Ruthenium 44Ru¹⁰⁵ which decays by β with half-life time 4.5 hours to Rhodium $_{54}\text{Rh}^{510}$, which decays by β^- with half-life time 35 hours to stable palladium 46Pd¹⁰⁵.
- Calculate the time in which the number of the Rhodium nuclei reaches to a maximum value. Derive the necessary formula that may use. (19 marks)
- 3- a) From β^+ decay of $_7N^{13}$ find the value of r_0 in the expression $R = r_0 A^{1/3}$. The maximum energy of a β^{+} is found to be 1.19 MeV.

 $[m_e = 0.000549 \text{ u}]$, $m_n = 1.008665 \text{ u}$, $m_p = 1.007277 \text{ u}$,

 $M(N^{13}) = 13.005738 \text{ u}, M(C^{13}) = 13.003550 \text{ u}, 1U = 931.5 \text{ MeV/C}^2,$

 $Ke^2=1.44$ MeV Fm 1

(13 marks)

b) Give an account on one of the accelerators.

(7 marks)

4- Write in details about the semi empirical mass-formula.

(20 marks)

Examiners:

- 1) Prof. Dr. Mahmoud Abouzeid
- 2) Prof. Dr. Hayam Mashaly
- 3) Dr. Mohamed Salah
- 4) Dr. Abeir Awadh

(clo (6) a// ld (6) (1)

Mansoura University
Faculty of Science
Physics Department
Course Title: Elasticity
Date: 24/12/2012

Jan. 2013
Exam Type: Final
Second Level: (Physics)
Time: 2 Hours
Full Mark: 80 Mark

Answer the following questions:

1- a- What the difference between elastic and viscoelastic material? [10 Mark] b- What is the meant by fatigue and mention the type of it. [6 Mark] c-Write on the following: - Stress- Elasticity- Strain [9 Mark] 2- a- What is the meant by creep and Mention the types of it. [10 Mark] b- Write on the following: -[15 Mark] Dynamic modulus- Deformation- Toughness- Resilience [10 Mark] 3- a- Explain the factors affecting on the fatigue life. b- Write on the following:-Elastic moduli- Fracture - Stages of creep [15 Mark] c- Discuss Stress- Strain curve [5 Mark]

With best wishes

Examiners

أ.د. أبوبكر البديوى

أ.د. محمود أحمد أبوزيد

الم من الله - فيول - جوية وقلك في الماء

Mansoura University **Faculty of Science Physics Department Subject: Physics**

First Term

Credit hours Students: Physics

Date: January 2013 Time allowed: 2 hours

Course: Physics 212, Meteorology & Astronomy Full Mark: 80 Mark

Answer the 1st question then any other two questions

- [1] a- Derive the differential equation for the motion of a body in a field of a [10] Marks central force, when $r \neq r(\theta)$
 - b- A body moves under the effect of central force in an orbit of radius is given by $r = 3a \cos \theta$, determine:
 - i- The potential energy V(r),

[10] Marks

ii- The force F(r).

[5] Marks

- c- Calculate the distance between the sun and Earth planet at 23rd of December if the astronomical unit $a = 150 \times 10^6 \text{ km}$. [5] Marks
- [2] a- State Kepler's 2nd law.

[3] Marks

b- Define the Eccentricity.

[7] Marks

- c- Prove that the planet increases its velocity when it come closer to the sun and slower its velocity when it is far away from the sun [10] Marks
- d- The troposphere is unstable layer. Discuss this phrase.

[5] Marks

[3] a- For El-Mansoura of latitude 31°N, on 22 of March, Calculate: i-The declination angle. ii-The zenith angle, at 10:00 LAT.

[12] Marks

iii-The time of sunrise and sunset iv-The day length.

b-The atmosphere consists of different layers. Discuss this phrase with illustrating the dependence of temperature on altitude.

[6] Marks

c- Study the effect of the latitude angle ϕ and the declination angle δ on the sunrise hours at the following conditions:

i- At the equator, ii- At the poles, iii- At the equinoxes.

[7] Marks

[4] a- For Venus, Earth, and Saturn, the semi major axis are (0.723, 1.0, 9.54) AU and the eccentricity are (0.007, 0.017, 0.056) respectively. Determine i-The semi major axis in Km, ii-The periodic time in days, iii-The Aphelion iv-The Perihelion and v-The nearest distance from Earth.

Tabulate your results

[15] Marks

b- Mercury has no atmosphere. Discuss this phrase

[10] Marks

Good Luck

Examiners: 1- Prof. Dr. Magdy Tadros Yacoub* 2- Prof. Dr. Mahmoud Abou Zeid

3- Dr. Hamed Ibrahem

4- Dr. Aziza Atta

Mansoura University Faculty of Science Physics Department

Course code: Phy 210

Course title: Thermodynamics

2nd Level physics students

Appleusion - Lio-villa En H

Full Mark: 80

Allowed time: 2 hours

First semester 2012-2013 Date: 2-1-2013

Answer all the following questions:

Marks

25

25

30

- Using Maxwell's equation deduce the first and second TdS equations, then find (C_p-C_v) in terms of coefficient of volume expansion β and isothermal compressibility K.
 - Deduce the enthalpy equation $\left(\frac{\partial h}{\partial P}\right)_T = V(1 \beta T)$ and find $\left(\frac{\partial h}{\partial P}\right)_T$ for an ideal gas.
- 2- a- State and prove Clausius inequality.
 - b- Using the fact that Gibbs function remain constant during a reversible process taking place constant temperature and pressure, deduce the Clausis Clapeyron equation.
 - c- Find the increase in boiling point of water when the pressure increase is 1.5 atmosphere, and one gram of water vapour have volume 1761 cm³ and latent heat of vaporization 540 Cal/gm.
- One gram of an ideal gas C_v=(5/2) R Joule/ mole K at temperature 127 °C and pressure 1 atmosphere, if its temperature increased at constant volume until its pressure becomes 2 atmosphere and then the gas expand adiabatically until its temperature return to 127 °C and finally the gas compressed isothermally to its initial volume. Draw the cycle on (P-V) and on (T-S) diagram and find:-
 - I. The change in internal energy during the change at constant volume.
 - II. The work done during adiabatic change.
 - III. The change in enthalpy during the isothermal change.
 - IV. The change in entropy during the isothermal change.
 - V. The efficiency of the cycle (R=8.3 Joule / mole K).

Best wishes:

Dr. Anwar Megahed

Mansoura University Faculty of Science Physics Department

Level (2) physics students Full Mark: 80 Allowed time: 2 hours Course title: phys 214 classical mechanics.

Answer the following questions:

Marks

1-	a-	Prove that the total external torque on a system of particles is equal to the	
1-	a		
		time rate of change of angular moment of the system and show that the	15
s		internal forces are central forces.	
	b-	Show that $\sum_{i} m_i r_i = \sum_{i} m_i \dot{r}_i = 0$ where r_i and \dot{r}_i are the position vector and	10
		velocity of particle i relative to the center of mass.	
2		Diet the force function related to the notential diagram and classify with	
2-	a-	Plot the force function related to the potential diagram and classify with	
		give reason, whether the points A, B, C are stable or not.	20
	b-	Draw the potential function related to the force $F = -G m_1 m_2/r^2$, $F = -kx$	10
3-	a-	Find the moment of inertia of two particles m ₁ and m ₂ connected by a rigid	
		rod of length a about perpendicular axis to the plane from the center of	15
		mass. in terms of a.	
	b-	Prove the parallel axis theorem of moment of inertia.	
			10
2			

Best wishes:

أ.د/ عطالله الحنبلي

Mansoura University Faculty of Science Physics Department

Level (2) physics students Full Mark: 80 Allowed time: 2 hours Course title: phys 214 classical mechanics.

Answer the following questions:

Marks

1-	2	Prove that the total external torque on a system of particles is equal to the	
T-	a-		
		time rate of change of angular moment of the system and show that the	15
51		internal forces are central forces.	
	b-	Show that $\sum_{i} m_i r_i = \sum_{i} m_i \hat{r}_i = 0$ where r_i and \hat{r}_i are the position vector and	10
		velocity of particle i relative to the center of mass.	10
2-	a-	Plot the force function related to the potential diagram and classify with	
		give reason, whether the points A, B, C are stable or not.	20
		Draw the potential function related to the force $F = -G m_1 m_2/r^2$, $F = -kx$	10
	b-	Draw the potential function related to the force $F = G \prod_{1} \prod_{2} I$, $I = -KX$	10
3-	a-	Find the moment of inertia of two particles m ₁ and m ₂ connected by a rigid	
		rod of length a about perpendicular axis to the plane from the center of	15
ăi		mass. in terms of a.	
		111455. 111 121 115 87	
	b-	Prove the parallel axis theorem of moment of inertia.	
			10
4			

Best wishes:

أ.د/ عطالله الحنبلي

دور: يناير 2013

الزمن: ساعتان

التاريخ: 2013/1/20

كلية العلوم - قسم الرياضيات

الفرقة: المستوى الثاني

المادة: جبر خطى وهندسة

كود المادة: (ر203)

البرنامج: فيزياء

الدرجة الكلية: 80

أجب عن الأسئلة الآتية:

1-أ) باستخدام طريقة جاوس - جوردان حل مجموعة المعادلات:

 $2x_1 + x_2 + x_3 = 8$, $3x_1 - 2x_2 - x_3 = 1$, $4x_1 - 7x_2 + 3x_3 = 10$

(1-2,1-1) اوجد معادلة المستقيم المار بالنقطة (1-2,1-1) وعمودي على المستوى

على هذا (1, -1, 1) على هذا 2x + y - 2z + 3 = 0

المستقيم .

2- أ) عرف كل من : الفراغ الجزئي - الاستقلال الخطى - الأساس و البعد للفراغ الاتجاهى

ب) حدد ما إذا كانت الفئة $\{V_1,V_2,V_3\}$ تكون أساسا للفضاء $S=\{V_1,V_2,V_3\}$ أم لا حيث

 $V_1 = (1,0,1), V_2 = (1,1,1), V_3 = (1,-1,2)$

 $A^2-3\,A+I=0$ جـ) بفرض أن A مصفوفة مربعة وقابلة للانعكاس و تحقق

(20 درجة)

. $A^{-1} = 3I - A$ فاثبت أن

-3 اوجد المعكوس و القيم الذاتية وأساسات الفراغات الأساسية للمصفوفة

$$A = \begin{bmatrix} 2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix}$$

ب) اوجد نقطة تقاطع المستقيم $\frac{x+2}{2} = \frac{y-4}{2} = \frac{z+4}{2}$ مع المستوى

. واوجد أيضا الزاوية بين المستقيم و المستوى 3x + 4y + 12z + 19 = 0

(20 درجة)

$$\frac{x-2}{2} = \frac{y-3}{-1} = \frac{z+4}{3}$$
, $\frac{x-3}{1} = \frac{y+1}{3} = \frac{z-1}{-2}$ (1-4)

يتقاطعان واوجد نقطة التقاطع والزاوية بينهما و معادلة المستوى الذي يحتويهما .

ب) اثبت انه إذا كان c=a+b فان نظام المعادلات :

. يكون متآلفا x+y+2z=a , x+z=b , 2x+y+3z=c

مع تمنياتنا بالتوفيق والنجاح إن شاء الله

جرية السولين . مقدمة إلفزار الحرية فع ١١١

Mansoura University
Faculty of Science
Physics Department

Course code: Bio-Phys 211
Course title: General biophysics

First term 2012-2013 Date: 16-1-2013

2nd Level students
Biophysics-Physics-MicrobiologyChemistry-Biochemistry-Chemistry
Botany - Chemistry Zoology and
Environmental Science

Tup 45, 45 - 621/42

Full Mark: 80

Allowed time: 2 hours

مل - تزيار جو ي

Answer all the following questions:

1- A- Write true ($\sqrt{ }$) or False (χ)

[each item = $1.5 \,\mathrm{Mark}$]

- i. The frequency range detected by the human ear is between 20 Hz-20000 KHz.
- ii. Hypermetropia caused by irregularity shaped cornea results in light focusing in front of retina.
- iii. There are three types of color sensitive cones in retina.
- iv. The human eye is organ design to receive visible light having wavelengths between 380 and 760 μm.
- v. Ionizing radiations are known to cause DNA damage, cancer, mutation and birth defects.
- vi. The electric potential of the heart can be measured by electro-encephalogram EEG.
- vii. There are negative charges on the outside of the cell membrane of neurons than the inside produces a resting potential of -70 mV.
- viii. The conduction speed of unmyleinated axons is given by $u = 1.8\sqrt{a}$ (m/sec) where a is the radius of axon (μ m).
- ix. The efferent neurons are those axons travel from sensing areas to the spinal cord
- x. The ear canal behaves like a pipe open from one end and the other end is closed by tympanic membrane.
- **B-** Calculate the lowest frequency in which sound resonates in ear, knowing that the velocity of sound is C=350 m/sec and the ear canal length is L=2.5 cm (n=1 when $L=\lambda/4$).
- What is the total flow resistance of a two parallel arteries in a calf have radius 0.5 mm and length 100 mm? If the volume flow rate of blood through these arteries is 1.2×10^{-6} m³/sec, what is the pressure drop across the arties knowing that $\eta_{blood} = 3.5 \times 10^{-3}$ poise.

[5 Marks]

2- A- Complete the following sentences: (each item = 2 Mark)

• The P-Wave in ECG indicates(1).....of the right and left(2).....

- The alpha waves of EEG have frequency range(3).....Hzin \dots (4).....state. • In(5).....effect, electron is ejected from the atom and is accompanied by scattered ...(6)..... Find an expression given for the half life time and decay constant of a radionuclide? [8 Marks] If you have 1gm of ²²⁶Ra that emits 3.7x10¹⁰ photon/sec. What is the decay constant and half life time knowing that Avogadro's number= 6.02×10^{23} . [5 Marks] A-Choose the correct answer: [each item = 1 Mark]The retina of the eye contains two types of photoreceptors cones and (Spheres- triangles- rods-rectangles). The flow of ions causes an electric current in the ion chamber with intensity ii. The beta particles are a fast moving(protons-neutrons-electronsiii. photons). iv. provide the eye's color sensitivity (Rods –Cones- Corneas –Irises). V. The percent of hydrogen atoms in human body is (53%-63%-73%-83%). vi. About of cones are green sensitive. (23%-42%-52%-62%). vii. 1 gray equal (1 rad- 10 rad-100 rad-1000 rad). 1 rem equal (0.1 Sv-0.01 Sv-0.001 Sv-0.0001 Sv). viii. Define the following: B-[each item = 2 Marks]a. Depolarization d. Decibel b. Graded potential e. Magnetic resonance imaging c. Radiation flux Calculate the capacitance per unit length and area of an unmyleinated axon, if the
 - and the radius $a = 3.5 \times 10^{-6}$ m and thickness of membrane is $b = 5 \times 10^{-9}$ m.

If a person has an unaided near point of 0.5 m, what would the power of a lens make him able to see an object at 25 cm? [5 Marks]

material in the axon membrane has dielectric constant K=7 and ϵ_o =8.85x10⁻¹² S/ohm-m

Best wishes:

Examiners:

B-

3-

Dr. H. Kamal Dr. N. Kenawi

Dr. M. Mansour

- and - own - 11

Mansoura University Faculty of Science Physics Department

Subject: Physics

Course(s): 21∅: Vibrations & waves

First Term

Level2: physics & Biophysics

Date Jan. 2013

Time Allowed: 2 hours Full Mark: 90 Mark

Answer The following questions

[1]	a- Solve the differential equation of forced	[10]Mark		
	oscillating waves.	8		
	b- Find the normal mode of oscillation of a wave	[10]Mark		
	propagates in a rod fixed at both ends.			
	c- A spring is hanged vertically and fixed at the			
	upper end. A mass of 7 Kg is fixed at the other			
	end. The mass is pulled down a distance of 5 cm	[10]Mark		
	and left, find			
	i) the maximum amplitude			
	ii) the periodic time			
	iii) the total energy			
[2]	a- Define the transmittance coefficient and prove	[15]Mark		
	that it depends on the density per unit length of	,		
	both parts of the string.			
	b- Find the apparent frequency at a detector for a	,		
	source of wave moves with velocity U away from the	[15]Mark		
	detector.			
[3]	a- Find the condition to obtain a straight line with	[15] Mark		
	negative slope as a resultant of the superposition of			
	to perpendicular waves.			
	b- Prove that the total energy of a SHM	[15] Mark		
æ	proportional with amplitude.			
Examiner				
1- Prof. Mahrous Shaker				