المعادلات المعاملات المعاملات ((١٤١٤))

Faculty of science Math-department theory of differential equations B.sc. Exam January: 2013

Time: 2 H

Answer the following questions:

1-a) Give the solution $\begin{cases} \frac{dx}{dt} = A e^{\lambda x} \\ \frac{dy}{dt} = B e^{\lambda x} \end{cases}$ and the path of the system $\begin{cases} \frac{dx}{dt} = 3x - y, \\ \frac{dy}{dt} = 4x - y \end{cases}$ (10marks)

- b) Define the following: Lipschitz condition, all types and stability of the critical points for any linear system, fundamental matrix and the orthonormal functions. (10marks)
- 2) State and prove the existence and uniqueness theorem of solution of the I.V problem,

$$\frac{dy}{dx} = f(x, y) , \quad y(x_0) = y_0 \quad \text{on} \qquad R := \{(x, y)/|x| \le a, |y| \le b\}.$$
 (20marks)

3-a) Discuss the existence and uniqueness solution of the D.E:

$$(x^2 - 4x + 5)y'' + \frac{1}{x-2}y' + y = 0, y(0) = 3, y'(0) = 0.$$
 (8marks)

b) If the vector functions
$$\varphi_1$$
, φ_2 ,, φ_n defined by $\varphi_1 = \begin{pmatrix} \varphi_{11} \\ \varphi_{21} \\ ... \\ \varphi_{n1} \end{pmatrix}$. $\varphi_2 = \begin{pmatrix} \varphi_{12} \\ \varphi_{22} \\ ... \\ ... \\ \varphi_{n2} \end{pmatrix}$,, $\varphi_n = \begin{pmatrix} \varphi_{1n} \\ \varphi_{2n} \\ ... \\ ... \\ \varphi_{nn} \end{pmatrix}$

are linearly dependent solutions of the H.L.V.D.E $\frac{dX}{dt} = A(t) x , y(x_0) = y_0 \text{ on } I = [a,b].$ Prove that the Wronskian W (ϕ_1 , ϕ_2 ,, ϕ_n) (t) = 0 (12marks)

4-a) Discuss all types and stability of the critical points of the system
$$\begin{cases} \frac{dx}{dt} = 2x - 7y \\ \frac{dy}{dt} = 3x - 8y \end{cases}$$
 (8marks)

b) Give the orthonormal functions of the boundary value problem,

$$\frac{d}{dx} \left[x \frac{dy}{dx} \right] + \frac{\lambda}{x} y = 0$$
, $y'(1) = 0$, $y'(e^{2\pi}) = 0$, $\lambda \ge 0$.

Mansoura University		29-12-2012
Faculty of science	Course: OR	Code:R421
Mathematics Department	(4 th level exam)	Time:2Hours
Answer the following questions	No. of Questions:4	Total Mark:80

Question:1

(20 marks)

(a) If it is possible solve the following mathematical models by using the graphical method.

Maximize
$$Z = 4x_1 + 5x_2$$
, Minimize $Z = 4x_1 + 3x_2$,
(i) $x_1 + x_2 \ge 5$, $x_1 + 4x_2 \le 16$, $x_1, x_2 \ge 0$. $x_1 + x_2 \ge 3$, $x_1 + x_2 \le 8$, $x_1, x_2 \ge 0$.

Maximize
$$Z = x_1 + 3x_2$$
,
subject to $-x_1 + 3x_2 \le 9$,
(iii) $x_1 + x_2 \le 6$,
 $x_1 - x_2 \ge 2$,
 $x_1, x_2 \ge 0$.

(b) Express the following L.P in the standard (matrix) form:

Maximize
$$Z = 4x_1 + 2x_2 + 6x_3$$
,
subject to $2x_1 + 3x_2 + 2x_3 \ge 5$,
 $3x_1 + 4x_2 = 8$,
 $6x_1 - 4x_2 + x_3 \le 10$,
 $x_1, x_2, x_3 \ge 0$.

Question:2

(20 marks)

(a) Use The big M-method to solve

Maximize
$$Z = 3x_1 + 2x_2,$$
subject to
$$2x_1 + x_2 \le 1,$$

$$3x_1 + 4x_2 \ge 4,$$

$$x_1, x_2 \ge 0.$$

(b) Construct the dual to the primal problem:

Maximize
$$Z = 3x_1 + 10x_2 + 2x_3$$
,
subject to $3x_1 + 4x_2 + 2x_3 \le 7$,
 $3x_1 - x_2 + 4x_3 = 6$,
 $6x_1 - 4x_2 + 2x_3 \ge 10$,
 $x_1, x_2, x_3 \ge 0$.

Question:3

(20 marks)

- (a) Find the initial feasible solution to the following transportation problem by:
 - (i) north-west corner rule,
 - (ii) Minimum cost rule,

To 3. Supply From Demand

(b) By using Vogel's approximation method solve the above problem.

Question:4

(20 marks)

Solve the following Assignment problem:

	I	II	III	IV
1	10	5	9	18
2	13	9	6	12
3	3	2	4	4
4	18	9	12	17

WITH THE BEST WISHES

Mans. Univ. Faculty of Science Dept. Math.

Fourth Year Exam. Lie algebra Math 415 Tim 2 Hours

Answer the following Questions

- [1] a) Define what we mean by a map ϕ is a homomorphism from Lie algebra L_1 to a Lie algebra L_2
 - b) Define the mapping $ad: L \to g\ell(L)$ by $x \to ad(x)$ such that ad(x)(y) = [x,y] Prove that ad(x) is a homomorphism called adjoint homomorphism.
 - c) Prove also that the kernel of ad is the center of L
- [2] Let A be an algebra. A derivation D of A is an linear map such that D(ab) = aD(b) + D(a)b for all $a, b \in A$
 - a) Show that [D,E] = DoE EoD is a derivation where E is also a derivation.
 - b) Show also that adx: $L \rightarrow L$ is also derivation
 - c) Let A be algebra $C^{\infty}R$. Define D(f) = f'. Prove that D is a derivation of A.
- [3] Define what we mean by L is a solvable Lie algebra.
 - a) Prove that every sub algebra and homomorphic image of L are solvable
 - b) Suppose that L has an ideal I such that I and L/I are solvable. Then L is solvable.
- [4] Let L be a Lie algebra. Define what we mean by V is L- module, where V is finite dimensional vector space
 - a) Give an example of a module structure of L by L
 - b) Define what we mean by a L module V is irreducible and also reducible.
 - c) Consider the Lie algebra $Sl(2,\mathbb{C})$, with the basis

$$e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
$$[e, f] = h$$
$$[e, h] = -2e$$
$$[f, h] = 2f$$

Give a irreducible module structure of $S1(2, \mathbb{C})$

117, (c) (six the - chipt) -2/1/5= 11

Level: 4

Program. Mathematics +

Statistics & Computer Science

Numerical Analysis (2)

(413)

Faculty of Science Mathematics Department

Time. 2 hour

Date: 12/1/2013

Answer the following Questions.

Question (1)

(i) What are row operations?

(3 Marks)

(ii) Determine the LU factorization of the coefficient matrix of the system (8 Marks)

$$3 x_1 - 13 x_2 + 9 x_3 + 3 x_4 = -19$$

$$-6 x_1 + 4 x_2 + x_3 - 18 x_4 = -34$$

$$6x_1 - 2x_2 + 2x_3 + 4x_4 = 16$$

$$12 x_1 - 8 x_2 + 6 x_3 + 10 x_4 = 26$$

(iii) Find the least squares line approximating the data in following Table

X _i	2	4	6	. 7	12
y _i	1	5	7	10	11

(4 Marks)

Question (2)

(i) Define characteristic polynomial $p(\lambda)$ and the spectral radius $\rho(A)$ of

a matrix A. Find
$$\|Ax\|_p$$
, $\|A\|_p$, $p=2,\infty$

(6 Marks)

$$A = \begin{bmatrix} 2 & 1 & 0 \\ -3 & 0 & 1 \\ 1 & -2 & 0 \end{bmatrix}, \qquad x = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$$

(ii) Determine the trigonometric polynomial that approximates the

$$f(x) = |x| on[-\pi, \pi].$$

(3 Marks)

(6 Marks)

(iii) Show that the linear system

$$4x_1 + 3x_2 = 24$$

$$3x_1 + 4x_2 - x_3 = 30$$

$$-x_2 + 4x_3 = -24$$

has the solution $(3, 4, -5)^t$, and using $x^{(0)} = (1, 1, 1)^t$ find the first two iterations of the SOR method with the optimal choice of ω ($\rho(T_{\omega}) = 0.24$). Find the error?

Question (3)

- (i) Define two means for measuring the amount by which an approximation to the solution to a linear system differs from the true solution to the system.

 (3 Marks)
- (ii) Solve this system of linear equations.

(9 Marks)

$$0.0001 x + y = 1$$

 $x + y = 2$

using (a) no pivoting, (b) partial pivoting, (c) and scaled partial pivoting. Carry at most five significant digits of precision (rounding) to see how finite precision computations and round-off errors can affect the calculations.

(iii) Let T_n(x) denote the Chebyshev polynomial, Show that

$$T_{n+1}(x)=2 \times T_n(x)-T_{n+1}(x), \quad n>1$$
 (3 Marks)

Question (4)

- (i) Derive the Legendre polynomials $\{P_n(x)\}$ of degree 2 in [-1, 1] using Gram-Schmidt process. Then find the least-squares polynomial of degree 2 in [-1, 1] for the function $f(x) = e^x$. (5 Marks)
- (ii) Prove that the sequence

$$x^{(k)} = T x^{(k-1)} + c$$
, $k \ge 1$

is convergent to the unique solution of x = T + c iff $\rho(T) < 1$. (5 Marks)

(iii) Show that the following function $G:D \subset \mathbb{R}^2 \to \mathbb{R}^2$ has unique fixed point in

$$D = \left\{ \left(x_1, x_2 \right) : 0 \le x_1, x_2 \le 1.5 \right\}, G\left(x_1, x_2 \right) = \left(\frac{x_1^2 + x_2^2 + 8}{10}, \frac{x_1 x_2^2 + x_1 + 8}{10} \right).$$
 (5 Marks)

Best Wishes;

Dr. Tamer Mohamed El-Azab

EKC, William - chipt - & yilou

Mansoura Univ.

Faculty of Science

Mathematics Dept.

Subject:Math. 423

Course Quantum Mechanics

4thYear: math.

Date Jan.2013

·Time: 2 hours

Full marks: 80

Answer the following questions:

[1] a) Why classical mechanics is not suitable to study small particles (which are affected by emission or absorption of light)? Derive Schrodinger equation.

b) Derive Ehrenfest theorem. Explain its importance. [20 marks].

[2] Solve Schrodinger equation for the harmonic Oscillator. What is the importance of the value 1/2 in the relation E=hw(n+1/2). [20 marks].

[3] a) Write short notice on quantum entanglement. Comment on Einstein objection to quantum mechanics.

b) Explain the WKB approximation method.

[20 marks].

[4] a) Derive uncertainty principle for unitary operators.

b) Derive the Casimir operator for the SU(2) algebra of the angular momentum operators [20 marks].

El-Mansoura- Egypt	4 th level of	of Math. Program	and	المنصورة - مصر
Mansoura University	the Program of S	tatistics and Com	puter Science	جامعة المنصورة
Faculty of Science	Subject	: Lattice Theory	Tail ab	كلية العلوم
Mathematics Departmen	t Course	Code: Math 4		قسم الرياضيات
First Term. 12 - 13:	Date:	Jan. 2013		Time: 2 hours

Answer the following five questions:

- 1- a- Give two distinct equivalent definitions of lattices. (6 points)
 - b- Give an example of each of:
 - 1 A partially ordered set (poset) but not a meet semilattice. (2 points)
 - 2 A non- modular lattice with 7 elements. (2 points)
 - 3 A modular lattice but not distributive with 6 elements. (2 points)
 - 4 A distributive lattice having n elements for each n. (2 points)
 - 5 An ≤ homomorphism between two lattices, (2 points) but not ∨- homomorphism.
 - c- Prove:
 - 1- If $a_1 \le b_1 \& a_2 \le b_2 \implies a_1 \land a_2 \le b_1 \land b_2$. (2 points)
 - 2- If $a \le c$, then $a \lor (b \land c) \le (a \lor b) \land c$ for each lattice. (2 points)
- 2- a- Let (L, \vee) be a join semilattice as an algebra. (\$ points) Find a semilattice (L, \leq) as a poset equivalent to (L, \vee) .
 - b- Give an example of a v-semilattice but not \(\shcap \semilattice \) (4 Points)
 - c- Give all v-semilattices with 4-element set. (4-points)
 - d- Give all lattices with 5 elements. (Lepoints)
- 3- a- For a group $G = (G; \cdot)$, Show that the set of all normal (10 points) subgroups N(G) of G with the inclusion \subseteq forms a modular lattice.
 - b Find the set of subgroups $S_{18\mathbb{Z}}(\mathbb{Z})$, of the group of integers (10 points). (\mathbb{Z} , +) containing 18 \mathbb{Z} . And then give the Hass Diagram of the lattice. $S_{18\mathbb{Z}}(\mathbb{Z})$. Is the lattice $S_{18\mathbb{Z}}(\mathbb{Z})$ distributive? Why?
- 4- a- Let $L = (L; \vee, \wedge)$ be a lattice. (8 points) Prove that:

L is not modular. $\Rightarrow L$ has a sublattice $\cong N_5$.

b - Determine the lattice $I_{\vee}(L)$ of all \vee -ideals and the lattice Con (L) of all congruences of a lattice L with 3 elements. (12 points)

Examiner: Dr. Magdi H. Armanious

Full Mark: 80 points