1

Year: 4th Level First Semester, 2011-2012 Mansoura University December, 2012 Specialization: Faculty of Science Time: 2 Hours Physics Program **Physics Department**

Subject: Elementary Physics Tuesday 25/12/2012 12-02 PM

(جسيمات أولية - ف ٢١٦)

Answer	(3) Questions ONLY: (Full mark: 80)	Mark
1.a)	Make a brief classification of the elementary particles, then give a quark description of: $\Sigma +$, Σ^0 , Σ -, Ξ^0 , Ξ -, Λ , $\Lambda +_c$, Ω^- .	10
1.b)	Put the charge (Q) & strangeness (S) values for the 9 spin-0 mesons in a table, then draw the hexagonal 8-fold way pattern (strangeness versus charge plot) for these values, [using a horizontal axis for (S) & a sloping axis for (Q)].	17
2.a)	- Chick the Baryon Numbers Conservations for the reaction: $p+n \to p+p+n+ \ p , \text{ and}$ - Chick the Lepton Numbers Conservations for the reaction: $\pi^+ \to \mu^+ + \nu_\mu + \nu_e , \text{ and}$ - Chick the Strangeness Conservations for the reactions: $\pi^0 + n \to K^+ + \Sigma^-$	11
2.b)	Tabulate the values of the charge & baryon numbers for each of the following quarks: u, d, s, c, b & t & the corresponding antiquarks. Then represent quark description of: p, p', n, π^0 , π^+ , k^0 .	16
3.a)	Write a brief account about the three generations of matter. Then show that the neutron decay via weak interaction, as indicated by Feynman diagram, is a good example of quark transformations which led to the discovery of the neutrino.	17
3.b)	Show how the decay of a kaon (K+) into three pions (2 π +, 1 π -) is a process that involves both weak and strong interactions	10
4.a)	How many color quantum numbers present for quarks & anti-quarks? And by using these colors mention all possible combinations for gluons	13
4.b)	Show how by introducing the new quantum number (color), the problem of existing 3 strange quarks (sss) in the omega-minus (Ω) particle can be solved?	14
5	Write briefly on ONE of the following: Hadron Collider or Higgs Particle.	27

	With our Best	wishes
Examiners:	Prof. Dr Ali H. El-Farrash	Prof. Dr Ahmad El-Garayhy
	Prof. Dr Mostafa Kamal	Prof. Dr Abu-Bakr El-Bedawi

er and an gradient of Solid growth franklike diversione use:

^{*} Corresponding Examiner enten ille dien kan 'n 1955 fan begin betom tiene ne 1966 er en

Mansoura University Faculty of Science Physics Department

First Term. 2013

4th level

Date: 29-12-2012 Time allowed: 2 hours

Full Mark: 80 Mark

Subject: Physics

ف Course: Laser and Application 410

Answer the Following Questions

- [1] a-Explain a method to obtain in single laser-mode out pout. Construct an experiment to investigate the longitudinal mode structure. [12 Marks]
 - b- Discuss the basic laser welding process of two metals.

[8 Marks]

c- Calculate the ratio of spontaneous and stimulated emission for a tungsten filament lamp operating at a temperature of 2000 K, taking the average frequency to be 5x10⁻¹⁴ Hz,

Not:

 $h=6.625 \times 10^{-34} \text{ J. sec}$, $K=1.38 \times 10^{-23} \text{ J/K}$. $C=3 \times 10^8 \text{ m/sec}$.

[7 Marks]

- [2] Deduce the condition of population inversion in a three level laser. Sketch curves for dependence of Δ N/N as a function of excitation intensity Γ expressed in terms of Γ ₀. [26 Marks]
- [3] a- Describe the essential feature of He-Ne laser. Sketch schematic diagram of this laser tube. Explain by the aid of an energy-level diagram, how population inversion is brought about in such gaseous system? [12 Marks]
 - b- Calculate the spectral broading due to Dopplers effect in He -Ne laser (λ = 6328A°). Assuming a discharge temperature of about 400K and a Neon atomic mass of 20.

Not: Avogadro's number = 6.022×10^{23} .

 $C=3 \times 10^{10} \text{ cm/sec.}$ $K=1.38\times10^{-16}$ erg /K.

[7 Marks]

c- Explain the sandwich hologram technique to measure the distortion of an object.

[8 Marks]

Good Luck

Examiner: Prof. Dr. Taha Sakkar

Mansoura University Faculty of Science Physics Department

First Term. 2013

4th level

Date: 29-12-2012 Time allowed: 2 hours

Full Mark: 80 Mark

Subject: Physics

ف Course: Laser and Application 410

Answer the Following Questions

- [1] a-Explain a method to obtain in single laser-mode out pout. Construct an experiment to investigate the longitudinal mode structure. [12 Marks]
 - b- Discuss the basic laser welding process of two metals.

[8 Marks]

c- Calculate the ratio of spontaneous and stimulated emission for a tungsten filament lamp operating at a temperature of 2000 K, taking the average frequency to be $5x10^{-14}$ Hz,

Not:

 $h=6.625 \times 10^{-34} \text{ J. sec}, K=1.38 \times 10^{-23} \text{ J/K}. C=3 \times 10^8 \text{ m/sec}.$

[7 Marks]

- [2] Deduce the condition of population inversion in a three level laser. Sketch curves for dependence of $\Delta N/N$ as a function of excitation intensity Γ expressed in terms of Γ_0 . [26 Marks]
- [3] a- Describe the essential feature of He-Ne laser. Sketch schematic diagram of this laser tube. Explain by the aid of an energy-level diagram, how population inversion is brought about in such gaseous system? [12 Marks]
 - b- Calculate the spectral broading due to Dopplers effect in He -Ne laser ($\lambda = 6328$ A°). Assuming a discharge temperature of about 400K and a Neon atomic mass of 20.

Not: Avogadro's number = 6.022×10^{23} .

 $C=3 \times 10^{10} \text{ cm/sec.}$ $K=1.38\times10^{-16} \text{ erg /K}.$

[7 Marks]

c- Explain the sandwich hologram technique to measure the distortion of an object.

[8 Marks]

Good Luck

Examiner: Prof. Dr. Taha Sakkar

Mansoura University Faculty of Science Physics Department Subject: Physics

First Term

Fourth Year : Physics Date : 1 / 1 / 2013

Good luck Hayam mashaly

Time allowed : 2 hours

Fourth Year Physics

Electrodynamics(1) - phys. (413)

Points Answer the following questions 1- Unpolarized plane electromagnetic wave is incident obliquely on the interface (25)between two dielectric media with refractive indices n_1 , n_2 and $\mu_1 = \mu_2$, respectively, (a) Find an expression for the reflection coefficient when the \overrightarrow{E} component is parallel to the plane of incidence. (b) Show that at Brewster's angle the reflected wave is linearly polarized normal to the plane of incidence. 2 - Answer (a) or (b) only (15)(a) Show that the wave guide acts as a high pass filter and each of the electromagnetic field vectors inside the guide is a superposition of two modes, one is TE and the other is TM. Explain why TEM wave can not be propagated through wave guides. (b) Write the equation of motion for a free electron in a metal under the influence (15)of an electromagnetic field with angular frequency $\boldsymbol{\omega}$. Solve the equation to obtain the Conductivity as a function of $\boldsymbol{\omega}$. Use the result to discuss the propagation of the wave through plasma medium. 3 - (a) The Lorentz gauge for the electromagnetic field requires that (25) $\nabla \cdot \hat{A} = -\epsilon \mu \frac{\partial \varphi}{\partial t}$, find the differential equation satisfied by the vector potential \bar{A} and the scalar potential φ . (b) Show that the retarded potential $\varphi(\bar{r},t)$ satisfies the inhomogeneous wave equation obtained in part (a). 4 - Obtain the ratio of the reflected to incident powers of an electromagnetic wave (15)reflecting from a conducting surface at normal incidence. Show that the transmitted power tends to zero in case of a perfect conductor.

Mansoura University Faculty of Science Physics Department Level: Four Program: Physics Code: Ph 412 First Semester Final Exam, 2012-2013 September, 2013 [2013-01-05]

Time: 2 Hours

Quantum Mechanics II

Answer ALL of the Following Questions:

(Total mark: 80 marks)

7112	Wel ALL of the Following Questions. (10th mark. 80 marks)	,
1.	A nuclear particle of spin $\frac{1}{2}$ initially in spin state $\alpha_z = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ has spin motion only immersed in a magnetic field has the form $\underline{B}(t) = B_0[\cos(\omega t)\hat{\underline{i}} - \sin(\omega t)\hat{\underline{j}}] + B_z\hat{\underline{k}}$. Find the resonance frequency of this system.	15
2.a) b)	Consider an atom in its unperturbed state $\psi_n(\underline{r},t)$ at time $t < 0$ interacts with a weak electro-magnetic field of Hamiltonian $H'(\underline{r},t) = 2H'(\underline{r})\cos(\omega t)$. What is the transition probability of this atom to another state $\psi_m(\underline{r},t)$ at time $t > 0$. Find the transition probability rate after a long-time. Assume that an adiabatic perturbation is turned on at time $t = 0$ on an unperturbed	15 10
D)	system in state n . Calculate the probability of transition of this system to another state $m \neq n$.	10
3.	A particle of mass (m) and energy (E) scattered from a fixed scattering center of central potential $V(r)$. Derive the total scattering cross-section of this process in terms of the partial wave phase shift. Then calculate the total scattering cross-section for low energy incident particle.	15
4.a)	Consider a particle of mass (m) and energy (E) scattered from a central potential $V(r)$. Using Born approximation, calculate the scattering amplitude of this process. [The normalized plane-wave of a particle in a box of length (L) is $ k\rangle = e^{i\frac{k\cdot r}{L}}/\sqrt{L^3}$, the energy density in this box is $g(E_k) = mL^3k/(2\pi^2\hbar^2)$ and the rate of transition probability is $w_{kk'} = (2\pi/\hbar)g(E_{k'}) \langle k V(r) k'\rangle ^2$]	15
b)	Using Born approximation, evaluate the differential scattering cross-section of a particle of mass (m) scattered from an attractive Gaussian potential $V(r) = -V_0 e^{-(r/R)^2}$, where V_0 and R are constants. $[\int_0^\infty dr r \sin(Kr) e^{-(r/R)^2} = (\sqrt{\pi}/4) K R^3 e^{-(KR/2)^2}]$.	10

With our Best Regards

Examiners: Prof. Essam M. Abulwafa (*) Prof. Gomma' El-Damarawy

1) co Ched of Tellest on 11

Mansoura University	Specialization: physics	1 st Semester, 2012-2013
Faculty of Science	4 th level	Jan., 2013
Physics Department	Phys (411)	Time: 2 Hours

Subject: Semiconductors Final examination

(Full mark: 80 degrees)

Answ	er the Following Questions:	Mark
1. a)	What do we mean with: i- Intrinsic Semiconductors. ii- Extrinsic Semiconductors. iii- Depletion region. iv- Drift mobility. v- Conduction Band. vi- Forbidden energy gap. vii- Valence Band. viii- hot-electrons.	16 marks
b)	Calculate the resistively of intrinsic specimen of Ge at 300K if the electron density is $2 \times 10^{19} / \text{m}^3$, electron mobility 0.39 and positive holes mobility is 0.19 m ² /V.S respectively.	4 marks
2. a)	Deduce the effective mass relation in crystal lattice.	12 marks
b)	"All elements of IV- group has the diamond structure" .Explain in details this expression.	8 marks
3. a)	Deduce the position of Fermi level at zero Kelven in intrinsic semiconductor.	12 marks
b)	Study the effect of temperature on both the drift velocity and hot – electrons.	8 marks
4. a)	Deduce the concentration of carriers in intrinsic semiconductor.	12 marks
b)	A crystal of semiconductor has positive holes with density 4.2×10^{15} /cm ³ and density of states in V.B = 8.4×10^{14} /cm ³ . Calculate the position of Fermi energy level at -9°C.	8 marks

With our Best wishes,

Examiners: Dr. Safaa Abdelmaksoud & Prof.Dr A.M.Abdelrazek.

1/2 6 4 5 mbr, 1 pig - 6 pl 100 - 1

Mansoura University
Faculty of Science
Physics Department

First Semester, 2012-2013
January, 2013 (15-01-2013)
Time: 2 Hours

Phy 414: Mathematical Physics 3

Ans	wer All of the Following Questions: (Full mark: 80)	Mark
1.a)	Show that: $f(z) = \exp(x)[\cos(y) + i\sin(y)]$ is analytical and then find $f'(z)$.	8
b)	Calculate the harmonic conjugate of: $u(x, y) = 2x(1-y)$.	8
2.a)	Solve the integral equation: $\phi(x) = \int dt \exp(x+t)[1+\phi^2(t)]$, by the degenerate kernels method.	8
b)	Solve the Volterra integral equation: $\phi(x) = \exp(x) + \int dt \exp(x-t)\phi(t)$, by Laplace transform.	8
3.	Find the characteristic number and eigen-function of the homogeneous integral equation if the kernel is given by: $k(x,t) = \begin{cases} x(t-1), & 0 \le x \le t, \\ t(x-1), & t \le x \le 1. \end{cases}$	16
4.a)	Construct the resolvent kernel for: $k(x,t) = \sin(x)\cos(t), \qquad [a,b] = [0,\pi/2].$	8
b)	Find the value of the integral: $ \int_C dz \frac{(3z^3 + 2)}{(z+1)(z^2 + 9)}, \text{ where } C \text{ is } z-2 = 2. $	8
5.a)	Find the Laurent series for: $\frac{\exp(2z)}{(z-1)^3}$ at $z=1$.	8
b)	Evaluate the integral: $\int dz \frac{\cosh(\pi z)}{z(z^2+1)}$, where C is the circle $ z =2$.	8

With our Best wishes

Examiners: Prof. Sayed A. Elwakil	Prof. Ahmed H. Oraby
Dr. Ahmed Abulella	Dr. Aziza A. Abd-el-Aziz

الم يتوالوا عرباء الكرونات رقية ف ١٧٥

Mansoura university

Faculty of Science

Physics Department

Digital Electronics Exam.

Code: Phys. 417

first Term

Fourth Year: Physics

Date: 22 jan. 2013

Allowed time: 2 hours

Full Mark: 80 Marks

Answer The following Questions:

1- a) Draw the comparator logic circuit which used to compare Two 4 -bit a-binary numbers P, Q

b) Design the logic circuit required to drivethe segment g in the 7- segment display used to display numbers from 0 TO 9 as shown in figure (2) using

8 To 1 line data Multiplexer

figure (2)

2- a) Design a logic circuit that has four inputs A ,B ,C and D . The output of this circuit should be high only when at least two of the inputs are high .Then show how to implement this circuit using

ALL- NAND gates

- b) Desgine synchronous decade counter using J-k flip-flops and draw the output waveform of each flip-flop.
- 3-a) Design the logic circuit of a full adder, then draw how to connect a half-adder and three full-adders to form a four- bit parallel adder.
 - b) Convert the follwing binary numbers to octal and Hexadecimal equivalent: 101010100110 , 10110 . 010101
- 4 a) Determine the Q output in relation to the clock for S-R flip-flop connected as shown in figure (3).

b) Convert the following numbers to their binary equivalent . $(48C)_{16}$, $(356.25)_{8}$, $(35.625)_{10}$.

الم يورالا ع - فرا . - من العاقمة الدسة , المربة ف W

Mansoura University Faculty of Science Physics Department	Physics Students	First Semester, 2012-2013 Credit hours Students: 4 th level January, 2013 (22/01/2013) Time: 2 Hours		
Course: Physics (418)	Renewable Energy	Full Mark: 80 Marks		

Answer the first question then "Only Two" From The Following:

1-a)	The Sun is considered as the main source of Renewable Energy consists of a body and atmosphere. Discuss this phrase.	15
1-b)	Calculate the area of the solar panel needed to give 5 KW, if the sensors in the panel are supplied by energy from silicon photocells of efficiency 30% and the photosphere temperature is $5800^{\circ}k$, and if sensors are located at: i- Mercury planet, ii- Earth, iii-Jupiter. $r_{\text{Mercury}} = 0.58 \times 10^8 \text{ Km}, \ r_{\text{Earth}} = 1.5 \times 10^8 \text{ Km}, \ r_{\text{Jupiter}} = 7.78 \times 10^8 \text{ Km}, \ R_{\odot} = 6.96 \times 10^5 \text{ Km}, \qquad \sigma = 5.67 \times 10^{-8} \text{ w m}^{-2} \text{ k}^{-4}.$	15
2-a)	If the sun temperature is 5785 $^{\circ}k$, determine the value of the solar constant of the earth. Also determine the characteristic color of the spectra. $h = 6.6252 \times 10^{-34} \text{ J sec}$, $k = 1.3806 \times 10^{-23} \text{ J/}^{\circ}k$, $R_{\odot} = 6.96 \times 10^{8} \text{ m}$, $C_{o} = 2.9979 \times 10^{8} \text{ m/sec}$, $\alpha = 2897.8 \mu\text{m}^{\circ}k$, $r = 1.5 \times 10^{11} \text{ m}$	15
2.b)	Define each of the following: i- Photovoltaic phenomena. ii-Incidence monochromatic flux, iii-Transmitted monochromatic flux, iv- Reflected monochromatic flux, v- Absorbed monochromatic flux.	10
3.a)	Derive an expression for calculation of the daily extraterrestrial irradiation on a horizontal surface.	10
3.b)	Compare between the daily extraterrestrial irradiation on 22 March with that of monthly average daily irradiation for El-Mansoura (31° N), on an inclined surface with angle of inclination = 20° . Consider that $I_{sc} = 1367 \text{ W/m}^2$.	15

4. a)							ver an incl angle " $\theta_{\rm Z}$		
4.b)	spectra of the follow i-	f a black wing rang 0 – 0.39	body at t ges:	temperat 0.39 – 0.	ure 5785	°k, for th	e energy in e waveleng m . iv - λ	gths in	
	x μm k	$f(\mathbf{x})$	x μm k	$f(\mathbf{x})$	x μm k	$f(\mathbf{x})$	χ μm <i>k</i>	$f(\mathbf{x})$	15
	2200	0.101	4000	0.483	6300	0.762	19000	0.983	
	2300	0.120	4100	0.499	6400	0.770	20000	0.986	
2 .	2400	0.140	4200	0.516	6500	0.776	30000	0.995	

With My Best Wishes

Examiners:	Prof. Magdy Tadros (*)	Dr. Mohamed Abu zaid
S e	Dr. Shalabeia Badr	Dr. Neven Kamal