revaille - Engly - alivery

الفصل الأول	المستوى الثالث	جامعة المنصورة
ديسمبر 2012	شعبة رياضيات	كلية العلوم
الزمن: ساعتان	المادة: ميكانيكا تحليلية ر 326	قسم الرياضيات

أجب عن الأسئلة التالية:

- 1- أ) اذكر شروط تطبيق ميكانيكا لاجرانج على المنظومة الميكانيكية.
- ب) اذكر شرط وجود صياغة لاجرانجية لمعادلات حركة منظومة معطى لها دالة هاملتون $H(q_1,...,q_n,p_1,...,p_n)$
- ج) خرزة تتحرك على سلك دائرى أملس مستواه رأسى بينما يدور السلك بسرعة زاوية ثابتة ω حول قطره الرأسى، أوجد دالة لاجرانج وحل معادلة الحركة مستعينا بالتكامل الأول للحركة.
 - -2 أ) عرف منظومة ليوفيل وبين كيفية حل مسألة حركتها بفصل المتغيرات -2
- ب) جسيم كتاته الوحدة مشحون كهربيا يتحرك في المستوى تحت تــأثير قــوى جهــدها $V=-\frac{\mu}{r}+Ex$ (الجذب النيوتوني لمركز ساكن ثابت جاوس له μ ومجال كهربي منتظم فــي اتجاه محور μ . بين أن المنظومة تأخذ شكل منظومة ليوفيل في الإحداثيات المكافئية وبين كيفيــة حل مسألة الحركة بفصل المتغيرات .
 - 3- أ) اذكر مبدأ هاملتون محددا شروط تطبيقه على المنظومة الميكانيكية
- ب) جسيم يتحرك في الفراغ تحت تأثير قوة معينة. إذا كانت مركبتا كمية الحركة الزاوية ثابتين في اتجاهين متعامدين x,y أي إذا كان $G_1=c_1$, $G_2=c_2$ فأثبت أن المركبة الثالثة لكمية الحركة الزاوية أيضا ثابتة، ,أثبت أيضا أن القوة المؤثرة على الجسيم مركزية (متجهة إلى أو صادرة من نقطة الأصل دائما).
 - $L = vuv av^4$ الجرانج $L = vuv av^4$ الجرانج $L = vuv av^4$
 - أ) أوجد التكاملات الأولى لحركة المنظومة.
 - ب) عبر عن وضع المنظومة (الإحداثيين u,v) بدلالة الزمن.
- ج) بين مع التعليل ما إذا كانت هذه المنظومة تكافئ منظومة راوث أو هاملتون وأوجد دالة راوث أو هاملتون المناظرة.

أستاذ المادة: أ. د./ حمد حلمي يحيي

MII) Greelate - "Green repl - alligand)

Final Exam- Semester I - Year 2012/2013

SUBJECT: Measure Theory

(MATH 311)

Level-3

Faculty of Science Mathematics Department

DATE: 3/1/2013

FULL MARK: 80

ALLOWED TIME: 2Hours

Answer the following questions

Question-1

- 1. Prove that, if $\mu: \Omega \to [0, \infty)$, $A, B \in \Omega$ and $\mu(A \cap B) < \infty$, then $\mu(A \cup B) = \mu(A) + \mu(B) \mu(A \cap B)$
- 1. Define the outer measure on an algebra Ω , and prove that If A is countable, then $\mu^*(A)=0$

Question-2

- 1. Define the measurable set, and prove that a set consisting one point is measurable and its measure is zero
- 2. Prove that if $\mu^*(E) = 0$, then E is measurable

Question-3

- 1. Define the measurable function, and prove that every continuous function is measurable
- 2. Prove that if f_1 and f_2 are measurable on [a,b] then so are $f_1+f_2,f_1.f_2$ and $Max\{f_1,f_2\}$

Question-4

Show that the function

$$f(x) = \begin{cases} 1, & x \text{ is a rational number in } [0,1] \\ 0, & x \text{ is an irrational number in } [0,1] \end{cases}$$

- 1. Is not Riemann integrable in [0,1]
- 2. Is Lebesgue integrable in [0,1] and find the value of Lebesgue integral of f(x) in [0,1]

القصل الدراسي الأول ٢٠١٣/٢٠١٢

المستوى الثالث البرنامج: الرياضيات النرمن: ساعتان النرمن: ساعتان المقرر: ر٣١٦ تحليل مركب كلية العلوم - قسم الرياضيات التاريخ: ١٠ / ١ / ٢٠١٣

Answer the following questions:

- 1. a. Define: Smooth curve, simple open contour, simply connected domain.
 - b. Prove that:

(i)
$$\sin^3 \theta = \frac{3}{4} \sin \theta - \frac{1}{4} \sin 3\theta$$

- (ii) $\sin 3\theta = 3\cos^2 \theta \sin \theta \sin^3 \theta$
- c. If $\lim_{z \to z} f(z)$ exists. Prove that it is unique.
- 2. a. Discuss the analyticity of $f(z) = e^{\overline{z}}$.
 - b. State and prove the sufficient C.R.E's for w = f(z) to be differentiable at z_0 .
- 3. a. Prove that $u(x,y) = e^{2x} \cos 2y$ is harmonic function and find its harmonic conjugate v(x,y) such that f = u + iv is analytic.
 - b. Prove that if w = f(z) is analytic function and if f'(z) is continuous for z on C and in Int(C). Then $\int f(z)dz = 0$.
- 4. a. Let f(z) be analytic in a simply connected domain D, z_1 , $z_2 \in D$. Then prove that $\int_{z_1}^{z_2} f(z) dz$ is independent of the path in D joining z_1 and z_2 .
 - b. Evaluate:

(i)
$$\int_{c_{+}}^{c_{+}} \frac{e^{3z} + \sin^{2} z}{(z+3i)^{3}} dz$$
, $z = 1 + 6e^{i\theta}$, $\theta \in [0,2\pi]$

(ii)
$$\int_{c_{+}} \frac{dz}{(z+2)^{3}z^{2}}$$
, $|z-1|=4$

مع تمنياتنا بالنجاح والتوفيق

اسم الممتحن: أ.د./ محمد كمال عبد السلام عوف

Mansoura University Faculty of Science Math. Dept.

Exam: Jan. 2013 Time: 2 hours Date 21 /1/2013

3rd year (stat. & Comp. Sci. and Math.) Subject: Probability Theory

Answer the following questions: (80 Marks)

1) a- If X_1 and X_2 are independent and identically distributed according to

$$f_{X_i}(x_i) = \begin{cases} e^{-x_i} & x_i > 0, \\ 0 & O.W. \end{cases}$$
 $i = 1, 2.$

Find (i) the probability density function of: $Z = \ln X_1$ and $Y = X_1/X_2$.

(ii)
$$P(X_1 < X_2)$$
.

(20 Marks)

b- If the joint probability function of
$$X$$
 and Y is given by
$$f(x,y) = \begin{cases} e^{-x/y} e^{-y} / y & 0 < x < \infty, 0 < y < \infty \\ 0 & O.W. \end{cases}$$

Find the conditional expectation E(X|Y=y).

(10 Marks)

2) a- If the joint probability function of X_1 and X_2 is given by

$$f(x_1, x_2) = \begin{cases} e^{-x_1 - x_2} & 0 < x_1 < \infty, 0 < x_2 < \infty \\ 0 & O.W. \end{cases}$$

Show that X_1 and X_2 are independent

(8 Marks)

b) For any two random variables X and Y, prove that

$$Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y).$$

(8 Marks)

c-If X is a random variable with mean 0 and finit variance σ^2 , then for any $\alpha > 0$

prove that:
$$P(X > a) \le \frac{\sigma^2}{\sigma^2 + a^2}$$
. (9 Marks)

3) a- If X and Y are independent and contuous r. v. having probability density functions f_{x} and f_{y} , show that the probability density function of X+Y is given by

$$f_{X+Y}(a) = \int_{-\infty}^{\infty} f_X(a-y) f_Y(y) dy.$$
 (10 Marks)

b- If X is a random variable having the density function.

$$f(x) = \begin{cases} (1/\theta)e^{-x/\theta} & x, \theta > 0, \\ 0 & O.W. \end{cases}$$

Find i - $M_{r}(t)$, the moment generating function

ii - α_3 , the skewness.

(15 Marks)

Best wishes.

Prof. Beih El-Desouky

Faculty of Science Department of Mathematics

3rd year Math Exam Math 316 Topology (1)

Date: 17/1/2013
Time: 2 hours
Mark: 80 marks

Answer the following questions:

- [1] a) Prove that $|(0,1)| > \aleph_0$.
 - b) Prove that if f: $X \to Y$, where (Y, σ) is a topological space, then $\tau = \{f^{-1}(H): H \in \sigma\}$ is a topology on X.
- [2] a) State and prove the Kuratowski closure axioms.
 - b) State and prove the characterization of the open sets in terms of neighborhoods.
- [3] a) Prove that the property of having a countable dense subset is a topological property.
 - b) Prove that a mapping f: $(X, \tau) \to (Y, \sigma)$ is closed iff $\overline{f(A)} \subset f(\overline{A}) \ \forall A \subset X.$
- [4] a) Prove that $(X, \tau) \in T_1 \leftrightarrow \{x\} \in \tau^c \ \forall x \in X$.
 - b) Give an example of a T_1 -space which is not T_2 .

Best wishes

Mansoura University, Faculty of Science, Mathematics Department

Numerical Analysis (1) Final Exam (Math. 313) - Term 1, January 2013 Third year students (Mathematics & Statistics and Computer Science) Date: 27 December 2012 Time Allowed: 2 hours

Answer the following questions . All questions carry equal marks . مسموح باستخدام الآلة الحاسبة

Question no.1:

1-a) Prove that: (i) $\Delta(x)_n = n(x)_{n-1}$, where $(x)_n$ is the falling factorial polynomial.

(ii)
$$(x)_{-m} = \frac{1}{(x+m)_m}$$
 (iii) $(1+\Delta)(1-\nabla) = 1$ (iv) $\frac{\Delta}{\nabla} - \frac{\nabla}{\Delta} = \Delta + \nabla$

- **1-b)** Show that any polynomial f(x) of degree n can be expressed in the form $f(x) = \sum_{k=0}^{n} \frac{\Delta^k f(0)}{k!} (x)_k$
- 1-c) Use the above formula in part 1-b) to find the polynomial that takes on the following values:

n	4	5	6	7
f(n)	61	71	83	97

Question no. 2:

2-a) State and prove the Montmort's theorem.

2-b) Use part **2-a),** or otherwise, prove that
$$\sum_{r=1}^{\infty} r(r+1) x^{r-1} = \frac{2}{(1-x)^3}.$$

2-c) Derive the Lagrange interpolating polynomial that interpolates the set of points $\{(x_0, y_0), (x_1, y_1), ..., (x_n, y_n)\}$. Write down the associated error term expression for this interpolation formula. Show also that the sum of the Lagrange basis functions is equal to 1.

Question no. 3:

3-a) The amount A of a substance remaining in a reacting system after an interval of time t in a certain chemical experiment is given by the following data:

t	2	5	8	14
A	94.8	87.9	81.3	68.7

Use the Newton interpolating polynomial to find the value of A at t = 4.

3-b) Consider the matrix
$$T_n = (t_{ij})_{i,j=1}^n$$
 given by: $t_{ij} = \begin{cases} 0 & \text{if } |i-j| > 1 \\ -1 & \text{if } |i-j| = 1 \\ 2 & \text{otherwise} \end{cases}$

By solving a suitable second order homogeneous difference equation show that det $(T_n) = n+1$.

3-c) Solve the following system of equations by using the Gauss-Seidel method

$$4x + 11y - z = 33$$

 $8x - 3y + 2z = 20$
 $6x + 3y + 12z = 35$

(Hint: start with the initial values x = 0, y = 0 and z = 0)

END OF EXAM

With kind regards
Examiner: Prof. Dr Moawwad El-Mikkawy