Mansoura University
Faculty of Science
Chemistry Department
Subject: Analytical Chemistry

4thlevel(Chemistry,Botany and Biology students)
Date:25-5-2013
Time allowed: 2 hours
Full Mark:80 Marks

Course Environmental Chemistry
Course code: CHEM 413.....

Answer the Following Questions:

- 1- Explain, with examples, the effect of toxic chemicals on enzymes. . (10marks)
- 2- Discuss the mechanism of action of insecticide (10 marks)
- 3- What is pollutant cycle? Illustrate such a cycle in the environment (10 marks)
- 4. Write short notes on <u>three</u> only of the following: (15 marks)
 - (a) Sanitary landfill method for waste disposal
 - (b) Incineration method of waste disposal
 - (c) Municipal waste composting
 - (d) The toxic effects of CO in the body. Is this effect reversible or irreversible? Does it act on enzyme system?
- 5- Define the following:
 - a) Heavy metals
- b) Chemical speciation
- c) BOD and DO

(15marks)

Best wishes,

Dr.I. Kenawy, Dr. M. Eldefrawy and Dr Weam Abo-Elmaty

<u>C</u>) <u>D</u>)	Q3) Answer of	Third question
	<u>A)</u>	<u>B)</u>
C) D)		The start was to great the second sec
C) D)		
<u>C)</u>		
<u>D</u>)		
	<u>C)</u>	D)

Co	
	mplete the following: (each one mark)
	1- What are the names of the 3 normal modes of vibration of CO ₂ ?
	2(1),(2) (3)
	3- Which mode(s) is/are IR active?(4)_(5)
	4- Which mode(s) is/are Raman active?(6)
	5- How many normal modes of vibration does each of the following have?
	a. H ₂ O(7)iii) CH ₄ (8)
	6- The unit of frequency values is(10)
	7- A spectrum containing radiation of specific wavelengths is called a(11)
	8- In the de Broglie formula describing the movement of an electron about the nucleus,
	the quantity "mv" is called its(12)
	9- If a hydrogen atom electron jumps from the n=6 orbit to the n=2 orbit, energy is
	(13)
	10- The energy of a photon is(14) proportional to its wavelength while is
	(15) proportional to its frequency.
~~ !	on (2) Change the Courset angular (2)
esu	on (2) Choose the Correct answer (2marks for each one)
1	Balmer series is of the historical, importance as it:
-	a- Lies in the far-infra red region
	b- Lies in the visible region
	c- Lies in the visible region
	d- Lies in the infrared region
2	Which of the following transitions is the highest energy transition?
-	A A HIGH OF THE TOHOWING IT ANSICTORS IS THE HIGHEST CHEEK THANSICION!
	a- n to σ*
	a- n to σ° b- n to π°
. 98	a- n to σ* b- n to π* c- σ to σ*
3	a- n to σ° b- n to π° c- σ to σ° d- π to π°
3	a- n to σ^* b- n to π^* c- σ to σ^* d- π to π^* The frequency of a transition is 5.4 × 10 ¹⁵ Hz. What is the corresponding wavelength?
3	a- n to σ^* b- n to π^* c- σ to σ^* d- π to π^* The frequency of a transition is 5.4 × 10 ¹⁵ Hz. What is the corresponding wavelength? a- 5.6×10^{-6} m
3	a- n to σ^* b- n to π^* c- σ to σ^* d- π to π^* The frequency of a transition is 5.4 × 10 ¹⁵ Hz. What is the corresponding wavelength? a- 5.6×10^{-6} m b- 180000 cm ⁻¹
3	a- n to σ^* b- n to π^* c- σ to σ^* d- π to π^* The frequency of a transition is 5.4×10^{15} Hz. What is the corresponding wavelength? a- 5.6×10^{-6} m b- 180000 cm ⁻¹ c- 560 nm
3	a- n to σ^* b- n to π^* c- σ to σ^* d- π to π^* The frequency of a transition is 5.4×10^{15} Hz. What is the corresponding wavelength? a- 5.6×10^{-6} m b- 180000 cm ⁻¹ c- 560 nm d- 5.6×10^{-8} m
	a- n to σ^* b- n to π^* c- σ to σ^* d- π to π^* The frequency of a transition is 5.4×10^{15} Hz. What is the corresponding wavelength? a- 5.6×10^{-6} m b- 180000 cm ⁻¹ c- 560 nm d- 5.6×10^{-8} m Selection Rule for electronic spectra :
	a- n to σ^* b- n to π^* c- σ to σ^* d- π to π^* The frequency of a transition is 5.4×10^{15} Hz. What is the corresponding wavelength? a- 5.6×10^{-6} m b- 180000 cm ⁻¹ c- 560 nm d- 5.6×10^{-8} m Selection Rule for electronic spectra: a- $\Delta S = \pm 1$
	a- n to σ^* b- n to π^* c- σ to σ^* d- π to π^* The frequency of a transition is 5.4×10^{15} Hz. What is the corresponding wavelength? a- 5.6×10^{-6} m b- 180000 cm ⁻¹ c- 560 nm d- 5.6×10^{-8} m Selection Rule for electronic spectra: a- $\Delta S = \pm 1$ b- $\Delta S = \pm 1/2$
	a- n to σ^* b- n to π^* c- σ to σ^* d- π to π^* The frequency of a transition is 5.4 × 10 ¹⁵ Hz. What is the corresponding wavelength? a- 5.6×10^{-6} m b- 180000 cm ⁻¹ c- 560 nm d- 5.6×10^{-8} m Selection Rule for electronic spectra: a- $\Delta S = \pm 1$ b- $\Delta S = \pm 1/2$ c- $\Delta S = 0$
4	a- n to σ^* b- n to π^* c- σ to σ^* d- π to π^* The frequency of a transition is 5.4 × 10 ¹⁵ Hz. What is the corresponding wavelength? a- 5.6×10^{-6} m b- $180\ 000\ \text{cm}^{-1}$ c- $560\ \text{nm}$ d- 5.6×10^{-8} m Selection Rule for electronic spectra: a- $\Delta S = \pm 1$ b- $\Delta S = \pm 1/2$ c- $\Delta S = 0$ d- none of these
	a- n to σ^* b- n to π^* c- σ to σ^* d- π to π^* The frequency of a transition is 5.4 × 10 ¹⁵ Hz. What is the corresponding wavelength? a- 5.6×10^{-6} m b- 180000 cm ⁻¹ c- 560 nm d- 5.6×10^{-8} m Selection Rule for electronic spectra: a- $\Delta S = \pm 1$ b- $\Delta S = \pm 1/2$ c- $\Delta S = 0$ d- none of these Which statement is correct about the vibrational ground state of an H ₂ molecule?
4	a- n to σ^* b- n to π^* c- σ to σ^* d- π to π^* The frequency of a transition is 5.4 × 10 ¹⁵ Hz. What is the corresponding wavelength? a- 5.6×10^{-6} m b- $180000\mathrm{cm^{-1}}$ c- $560\mathrm{nm}$ d- 5.6×10^{-8} m Selection Rule for electronic spectra: a- $\Delta S = \pm 1$ b- $\Delta S = \pm 1/2$ c- $\Delta S = 0$ d- none of these Which statement is correct about the vibrational ground state of an H ₂ molecule? a- The molecule is vibrating.
4	a- n to σ^* b- n to π^* c- σ to σ^* d- π to π^* The frequency of a transition is 5.4 × 10 ¹⁵ Hz. What is the corresponding wavelength? a- 5.6×10^{-6} m b- 180000cm^{-1} c- 560nm d- 5.6×10^{-8} m Selection Rule for electronic spectra: a- $\Delta S = \pm 1$ b- $\Delta S = \pm 1/2$ c- $\Delta S = 0$ d- none of these Which statement is correct about the vibrational ground state of an H ₂ molecule? a- The molecule is vibrating. b- The molecule is static in its ground state
4	a- n to σ^* b- n to π^* c- σ to σ^* d- π to π^* The frequency of a transition is 5.4×10^{15} Hz. What is the corresponding wavelength? a- 5.6×10^{-6} m b- $180000\mathrm{cm^{-1}}$ c- $560\mathrm{nm}$ d- 5.6×10^{-8} m Selection Rule for electronic spectra: a- $\Delta S = \pm 1$ b- $\Delta S = \pm 1/2$ c- $\Delta S = 0$ d- none of these Which statement is correct about the vibrational ground state of an H ₂ molecule? a- The molecule is vibrating. b- The molecule is static in its ground state c- In its vibrational ground state, the molecule has no vibrational energy.
5	a- n to σ^* b- n to π^* c- σ to σ^* d- π to π^* The frequency of a transition is 5.4×10^{15} Hz. What is the corresponding wavelength? a- 5.6×10^{-6} m b- $180\ 000\ \text{cm}^{-1}$ c- $560\ \text{nm}$ d- 5.6×10^{-8} m Selection Rule for electronic spectra: a- $\Delta S = \pm 1$ b- $\Delta S = \pm 1/2$ c- $\Delta S = 0$ d- none of these Which statement is correct about the vibrational ground state of an H ₂ molecule? a- The molecule is vibrating. b- The molecule is static in its ground state c- In its vibrational ground state, the molecule has no vibrational energy. d- The molecule is in its lowest vibrational level but is not vibrating
4	a- n to σ* b- n to π* c- σ to σ* d- π to π* The frequency of a transition is 5.4 × 10 ¹⁵ Hz. What is the corresponding wavelength? a- 5.6 × 10 ⁻⁶ m b- 180 000 cm ⁻¹ c- 560 nm d- 5.6 × 10 ⁻⁸ m Selection Rule for electronic spectra: a- ΔS= ±1 b- ΔS= ±1/2 c- ΔS= 0 d- none of these Which statement is correct about the vibrational ground state of an H₂ molecule? a- The molecule is vibrating. b- The molecule is static in its ground state c- In its vibrational ground state, the molecule has no vibrational energy. d- The molecule is in its lowest vibrational level but is not vibrating Which statement is incorrect about H₂O?
5	a- n to σ* b- n to π* c- σ to σ* d- π to π* The frequency of a transition is 5.4 × 10 ¹⁵ Hz. What is the corresponding wavelength? a- 5.6 × 10 ⁻⁶ m b- 180 000 cm ⁻¹ c- 560 nm d- 5.6 × 10 ⁻⁸ m Selection Rule for electronic spectra: a- ΔS= ±1 b- ΔS= ±1/2 c- ΔS= 0 d- none of these Which statement is correct about the vibrational ground state of an H₂ molecule? a- The molecule is vibrating. b- The molecule is static in its ground state c- In its vibrational ground state, the molecule has no vibrational energy. d- The molecule is in its lowest vibrational level but is not vibrating Which statement is incorrect about H₂O? a- H₂O has three IR active modes of vibration.
5	a- n to σ* b- n to π* c- σ to σ* d- π to π* The frequency of a transition is 5.4 × 10 ¹⁵ Hz. What is the corresponding wavelength? a- 5.6 × 10 ⁻⁶ m b- 180 000 cm ⁻¹ c- 560 nm d- 5.6 × 10 ⁻⁸ m Selection Rule for electronic spectra: a- ΔS= ±1 b- ΔS= ±1/2 c- ΔS= 0 d- none of these Which statement is correct about the vibrational ground state of an H₂ molecule? a- The molecule is vibrating. b- The molecule is static in its ground state c- In its vibrational ground state, the molecule has no vibrational energy. d- The molecule is in its lowest vibrational level but is not vibrating Which statement is incorrect about H₂O? a- H₂O has three IR active modes of vibration. b- H₂O has four degrees of vibrational freedom.
5	a- n to σ* b- n to π* c- σ to σ* d- π to π* The frequency of a transition is 5.4 × 10 ¹⁵ Hz. What is the corresponding wavelength? a- 5.6 × 10 ⁻⁶ m b- 180 000 cm ⁻¹ c- 560 nm d- 5.6 × 10 ⁻⁸ m Selection Rule for electronic spectra: a- ΔS= ±1 b- ΔS= ±1/2 c- ΔS= 0 d- none of these Which statement is correct about the vibrational ground state of an H₂ molecule? a- The molecule is vibrating. b- The molecule is static in its ground state c- In its vibrational ground state, the molecule has no vibrational energy. d- The molecule is in its lowest vibrational level but is not vibrating Which statement is incorrect about H₂O? a- H₂O has three IR active modes of vibration.

7	Match the molecular formula to the number of degrees of vibrational freedom. Which
N 1889	pair is correct?
- 19	a- CS ₂ ; 3.
	b- H₂S; 4.
	c- CO ₂ ; 3
	d- SO ₂ ; 3.
8	Which is the correct sequence of wavenumbers associated with the stretching of the
	following bonds?
	a- C-I > C-CI> C=O > CIN
	b- C-I > C-CI< C=O < CDN
	c- C-I < C-CI< C=0 < CIN
	d- C-I > C-CI> C=O < CDN
9	What is the moment of inertia, IB, of ¹ H ⁷⁹ Br if the bond distance is 142 pm? Atomic
,	masses are: ${}^{1}H = 1.008$, ${}^{79}Br = 78.92$.
بالمر	a- $1.22 \times 10^{-7} \text{ kg m}^2$
	b- $3.00 \times 10^{46} \text{ kg m}^2$
	$c-2.34\times10^{-37} \text{ kg m}^2$
	$d-3.33 \times 10^{-47} \text{ kg m}^2$
10	For which of the following molecules could a pure rotational spectrum not be observed in
10	the gas phase?
	a- N ₂
	b- CO
	c- NO
	d- HCl
11	The rotational constant of a phosphorus pentafluoride, PF ₅ , molecule is 3.566 Hz.
	Calculate the lengths of the equatorial P-F bonds.
	a- 2.731 Å
	b- 1.577 Å
	c- 1.109 Å
	d- 1.325 Å
12	In IR spectroscopy, the C-O bond has a frequency than the C-N bond
	because
	a lower on O stem has more mass than an N atom
	a- lower, an O atom has more mass than an N atom
	b- higher, an O atom has an even number of neutrons
	January and a state of the stat
	c- higher, an O atom has more electronegativity than an N atom
ar I	d- higher, an O atom has more mass than an N atom
40	A nonlinear molecule with n atoms generally has fundamental vibrational
13	
	modes.
	a- 2n
	b- 3n-6
	c- 3n-3
	d- 3n
14	In Hydrogen spectrum, which one of the following series lies in the ultraviolet region?
	a) Ballmer series
	b) Pfund series
	c) Lyman series
	d) Bracket series
	그는 그 그 그 그 그는 물리가 있는 것 같은 사람들이 하는 것 같아. 그는 그 그는 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그

a- lc=ls ln b- lc > ln = ln c ln c ln ln b- lc > ln ln c ln ln ln ln ln ln	15	moments of inertia of Prolate symmetric top is
b. I _c > I _b = I _A c. I _c > I _b > I _A d. I _c = I _b = I _A 16 Sunlight spectrum is. a - Discrete b - Line spectrum c - Continuous spectrum d - none of these 17 Electromagnetic radiation travels through vacuum at a speed ofm/s. a - 186,000 b - 125 c - 3x10° d - It depends on wavelength 18 An electron in a Bohr hydrogen atom has an energy of -1.362×10 ⁻¹⁹ J The value of not this electron is a - 1 b - 2 c - 3 d - 4 19 The photoelectric effect is a - the total reflection of light by metals giving them their typical luster b - the production of current by silicon solar cells when exposed to sunlight c - the ejection of electrons by a metal when struck with light of sufficient energy d - the darkening of photographic film when exposed to an electric field e - a relativistic effect 20 In the Bohr model of the atom, a - electrons travel in circular paths called orbitals b - electrons can have any energy c - electron energies are quantized d - electron paths are controlled by probability e - both A and C Question (3) A) The first band in the photoelectron spectrum of hydrogen, H ₂ , occurs close 15.4 eV and consists of a progression of peaks separated by 285 me corresponding to transitions to excited vibrational states of the H ₂ * ion. Calculat the wavenumber of the vibration of the lowest electronic state of the H ₂ * ion. marks) B) The first ionization energy of nitric oxide, NO, is 9.27 eV. Calculate the velocity the photoelectrons ejected when a sample of nitric oxide gas using radiation energy 21.22 eV from a helium lamp source. (5 marks) C) Calculate the vibrational frequency and energy in Joules per mole of a norm mode in its ground state of n=0 for CO, the force constant k = 1.86X10³kgs² (5 marks) D) Write short notes about Raman spectroscopy(10 marks)		
c	S RI LE	
d- lc=la=lh Sunlight spectrum is. a- Discrete b- Line spectrum d- none of these 17 Electromagnetic radiation travels through vacuum at a speed of		
Sunlight spectrum is.		
a- Discrete b- Line spectrum c- Continuous spectrum d- none of these 17 Electromagnetic radiation travels through vacuum at a speed ofm/s. a- 186,000 b- 125 c- 3x10 ⁸ d- It depends on wavelength 18 An electron in a Bohr hydrogen atom has an energy of -1.362×10 ⁻¹⁹ J The value of not this electron is a- 1 b- 2 c- 3 d- 4 19 The photoelectric effect is a- the total reflection of light by metals giving them their typical luster b- the production of current by silicon solar cells when exposed to sunlight c- the ejection of electrons by a metal when struck with light of sufficient energy d- net advantage of photographic film when exposed to an electric field e- a relativistic effect 20 In the Bohr model of the atom, a- electrons travel in circular paths called orbitals b- electrons can have any energy c- electron energies are quantized d- electron paths are controlled by probability e- both A and C Question (3) (25 mark: A) The first band in the photoelectron spectrum of hydrogen, H ₂ , occurs close 15.4 eV and consists of a progression of peaks separated by 285 mc corresponding to transitions to excited vibrational states of the H ₂ * ion. Calculat the wavenumber of the vibration of the lowest electronic state of the H ₂ * ion. Calculat the wavenumber of the vibration of the lowest electronic state of the H ₂ * ion. marks) B) The first ionization energy of nitric oxide, NO, is 9.27 eV. Calculate the velocity the photoelectrons ejected when a sample of nitric oxide gas using radiation energy 21.22 eV from a helium lamp source. (5 marks) C) Calculate the vibrational frequency and energy in Joules per mole of a norm mode in its ground state of n=0 for CO, the force constant k = 1.86X10 ³ kgs ⁻³ (5 marks) D) Write short notes about Raman spectroscopy(10 marks)	16	
c- Continuous spectrum d- none of these 17 Electromagnetic radiation travels through vacuum at a speed ofm/s. a- 186,000 b- 125 c- 3×10 ⁸ d- It depends on wavelength 18 An electron in a Bohr hydrogen atom has an energy of -1.362×10 ⁻¹⁹ J The value of not this electron is a- 1 b- 2 c- 3 d- 4 19 The photoelectric effect is a- the total reflection of light by metals giving them their typical luster b- the production of current by silicon solar cells when exposed to sunlight c- the ejection of electrons by a metal when struck with light of sufficient energy d- the darkening of photographic film when exposed to an electric field e- a relativistic effect 20 In the Bohr model of the atom, a- electrons travel in circular paths called orbitals b- electrons can have any energy c- electron energies are quantized d- electron paths are controlled by probability e- both A and C Question (3) (25 mark A) The first band in the photoelectron spectrum of hydrogen, H ₂ , occurs close 15.4 eV and consists of a progression of peaks separated by 285 me corresponding to transitions to excited vibrational states of the H ₂ * ion. Caulat the wavenumber of the vibration of the lowest electronic state of the H ₂ * ion. marks) B) The first ionization energy of nitric oxide, NO, is 9.27 eV. Calculate the velocity the photoelectrons ejected when a sample of nitric oxide gas using radiation energy 21.22 eV from a helium lamp source. (5 marks) C) Calculate the vibrational frequency and energy in Joules per mole of a norm mode in its ground state of n=0 for CO, the force constant k = 1.86X10 ³ kgs ⁻² (5 marks) D) Write short notes about Raman spectroscopy(10 marks)		
c- Continuous spectrum d- none of these 17 Electromagnetic radiation travels through vacuum at a speed ofm/s. a- 186,000 b- 125 c- 3×10 ⁸ d- It depends on wavelength 18 An electron in a Bohr hydrogen atom has an energy of -1.362×10 ⁻¹⁹ J The value of not this electron is a- 1 b- 2 c- 3 d- 4 19 The photoelectric effect is a- the total reflection of light by metals giving them their typical luster b- the production of current by silicon solar cells when exposed to sunlight c- the ejection of electrons by a metal when struck with light of sufficient energy d- the darkening of photographic film when exposed to an electric field e- a relativistic effect 20 In the Bohr model of the atom, a- electrons travel in circular paths called orbitals b- electrons can have any energy c- electron paths are controlled by probability e- both A and C Question (3) (25 mark: A) The first band in the photoelectron spectrum of hydrogen, H ₂ , occurs close 15.4 eV and consists of a progression of peaks separated by 285 metals controlled by the photoelectron state of the H ₂ * ion. Caulate the wavenumber of the vibration of the lowest electronic state of the H ₂ * ion. Caulate the wavenumber of the vibration of the lowest electronic state of the H ₂ * ion. Caulate the velocity of the photoelectrons ejected when a sample of nitric oxide gas using radiation energy 21.22 eV from a helium lamp source. (5 marks) C) Calculate the vibrational frequency and energy in Joules per mole of a norm mode in its ground state of n=0 for CO, the force constant k = 1.86X10 ³ kgs ⁻² (5 marks) D) Write short notes about Raman spectroscopy(10 marks)		
d- none of these Clectromagnetic radiation travels through vacuum at a speed ofm/s. a- 186,000 b- 125 c- 3×10 ⁸ d- 1t depends on wavelength		
a- 186,000 b- 125 c- 3×108 d- It depends on wavelength An electron in a Bohr hydrogen atom has an energy of -1.362×10 ⁻¹⁹ J The value of not this electron is		
a- 186,000 b- 125 c- 3×108 d- It depends on wavelength An electron in a Bohr hydrogen atom has an energy of -1.362×10 ⁻¹⁹ J The value of not this electron is	17	
b- 125 c- 3x10° d- It depends on wavelength An electron in a Bohr hydrogen atom has an energy of -1.362×10 ⁻¹⁹ J The value of not this electron is		
c- 3×10 ⁸ d- It depends on wavelength An electron in a Bohr hydrogen atom has an energy of -1.362×10 ⁻¹⁹ J The value of not this electron is		
d- It depends on wavelength An electron in a Bohr hydrogen atom has an energy of -1.362×10 ⁻¹⁹ J The value of not this electron is		
An electron in a Bohr hydrogen atom has an energy of -1.362×10 ⁻¹⁹ J The value of not this electron is		
this electron is	18	
a- 1 b- 2 c- 3 d- 4 19 The photoelectric effect is a- the total reflection of light by metals giving them their typical luster b- the production of current by silicon solar cells when exposed to sunlight c- the ejection of electrons by a metal when struck with light of sufficient energy d- the darkening of photographic film when exposed to an electric field e- a relativistic effect 20 In the Bohr model of the atom, a- electrons travel in circular paths called orbitals b- electrons can have any energy c- electron paths are controlled by probability e- both A and C Question (3) A) The first band in the photoelectron spectrum of hydrogen, H ₂ , occurs close 15.4 eV and consists of a progression of peaks separated by 285 me corresponding to transitions to excited vibrational states of the H ₂ * ion. Calculat the wavenumber of the vibration of the lowest electronic state of the H ₂ * ion. marks) B) The first ionization energy of nitric oxide, NO, is 9.27 eV. Calculate the velocity the photoelectrons ejected when a sample of nitric oxide gas using radiation energy 21.22 eV from a helium lamp source. (5 marks) C) Calculate the vibrational frequency and energy in Joules per mole of a norm mode in its ground state of n=0 for CO, the force constant k = 1.86X10³kgs² (5 marks) D) Write short notes about Raman spectroscopy(10 marks)		
b- 2 c- 3 d- 4 19 The photoelectric effect is a- the total reflection of light by metals giving them their typical luster b- the production of current by silicon solar cells when exposed to sunlight c- the ejection of electrons by a metal when struck with light of sufficient energy d- the darkening of photographic film when exposed to an electric field e- a relativistic effect 20 In the Bohr model of the atom, a- electrons travel in circular paths called orbitals b- electron stravel in circular paths called orbitals b- electron energies are quantized d- electron paths are controlled by probability e- both A and C Question (3)		
c- 3 d- 4 19 The photoelectric effect is a- the total reflection of light by metals giving them their typical luster b- the production of current by silicon solar cells when exposed to sunlight c- the ejection of electrons by a metal when struck with light of sufficient energy d- the darkening of photographic film when exposed to an electric field e- a relativistic effect 20 In the Bohr model of the atom, a- electrons travel in circular paths called orbitals b- electrons can have any energy c- electron energies are quantized d- electron paths are controlled by probability e- both A and C Question (3) (25 marks) A) The first band in the photoelectron spectrum of hydrogen, H ₂ , occurs close of the H ₂ ton. Calculate the wavenumber of the vibrations to excited vibrational states of the H ₂ ton. Calculate the wavenumber of the vibration of the lowest electronic state of the H ₂ ton. marks) B) The first ionization energy of nitric oxide, NO, is 9.27 eV. Calculate the velocity of the photoelectrons ejected when a sample of nitric oxide gas using radiation energy 21.22 eV from a helium lamp source. (5 marks) C) Calculate the vibrational frequency and energy in Joules per mole of a norm mode in its ground state of n=0 for CO, the force constant k = 1.86X10 ³ kgs ⁻² (5 marks) D) Write short notes about Raman spectroscopy(10 marks)		
d- 4 19 The photoelectric effect is		
The photoelectric effect is	- 1	
a- the total reflection of light by metals giving them their typical luster b- the production of current by silicon solar cells when exposed to sunlight c- the ejection of electrons by a metal when struck with light of sufficient energy d- the darkening of photographic film when exposed to an electric field e- a relativistic effect 20 In the Bohr model of the atom, a- electrons travel in circular paths called orbitals b- electrons can have any energy c- electron energies are quantized d- electron paths are controlled by probability e- both A and C Question (3) (25 marks) A) The first band in the photoelectron spectrum of hydrogen, H ₂ , occurs close to the H ₂		
b- the production of current by silicon solar cells when exposed to sunlight c- the ejection of electrons by a metal when struck with light of sufficient energy d- the darkening of photographic film when exposed to an electric field e- a relativistic effect In the Bohr model of the atom, a- electrons travel in circular paths called orbitals b- electrons can have any energy c- electron energies are quantized d- electron paths are controlled by probability e- both A and C Question (3) (25 marks) A) The first band in the photoelectron spectrum of hydrogen, H₂, occurs close 15.4 eV and consists of a progression of peaks separated by 285 me corresponding to transitions to excited vibrational states of the H₂⁺ ion. Calculat the wavenumber of the vibration of the lowest electronic state of the H₂⁺ ion. marks) B) The first ionization energy of nitric oxide, NO, is 9.27 eV. Calculate the velocity the photoelectrons ejected when a sample of nitric oxide gas using radiation energy 21.22 eV from a helium lamp source. (5 marks) C) Calculate the vibrational frequency and energy in Joules per mole of a norm mode in its ground state of n=0 for CO, the force constant k = 1.86X10³kgs⁻² (5 marks) D) Write short notes about Raman spectroscopy(10 marks)	19	
c- the ejection of electrons by a metal when struck with light of sufficient energy d- the darkening of photographic film when exposed to an electric field e- a relativistic effect 20 In the Bohr model of the atom,		
d- the darkening of photographic film when exposed to an electric field e- a relativistic effect 20 In the Bohr model of the atom, a- electrons travel in circular paths called orbitals b- electrons can have any energy c- electron energies are quantized d- electron paths are controlled by probability e- both A and C Question (3) A) The first band in the photoelectron spectrum of hydrogen, H ₂ , occurs close 15.4 eV and consists of a progression of peaks separated by 285 me corresponding to transitions to excited vibrational states of the H ₂ ⁺ ion. Calculat the wavenumber of the vibration of the lowest electronic state of the H ₂ ⁺ ion. marks) B) The first ionization energy of nitric oxide, NO, is 9.27 eV. Calculate the velocity the photoelectrons ejected when a sample of nitric oxide gas using radiation energy 21.22 eV from a helium lamp source. (5 marks) C) Calculate the vibrational frequency and energy in Joules per mole of a norm mode in its ground state of n=0 for CO, the force constant k = 1.86X10 ³ kgs ⁻² (5 marks) D) Write short notes about Raman spectroscopy(10 marks) 1 e.v = 1.602 * 10 ⁻¹⁹ 1 amu = 1.66x10 ⁻²⁷ kg h = 6.63x10 ⁻³⁴ J•s		
e- a relativistic effect In the Bohr model of the atom,		
ln the Bohr model of the atom,		
a- electrons travel in circular paths called orbitals b- electrons can have any energy c- electron energies are quantized d- electron paths are controlled by probability e- both A and C Question (3) (25 mark: A) The first band in the photoelectron spectrum of hydrogen, H₂, occurs close 15.4 eV and consists of a progression of peaks separated by 285 me corresponding to transitions to excited vibrational states of the H₂⁺ ion. Calcular the wavenumber of the vibration of the lowest electronic state of the H₂⁺ ion. marks) B) The first ionization energy of nitric oxide, NO, is 9.27 eV. Calculate the velocity the photoelectrons ejected when a sample of nitric oxide gas using radiation energy 21.22 eV from a helium lamp source. (5 marks) C) Calculate the vibrational frequency and energy in Joules per mole of a norm mode in its ground state of n=0 for CO, the force constant k = 1.86X10³kgs⁻² (5 marks) D) Write short notes about Raman spectroscopy(10 marks) 1 e.v = 1.602 * 10⁻¹¹¹ 1 amu = 1.66x10⁻²²′ kg h = 6.63x10⁻³⁴ J∙s		
b- electrons can have any energy c- electron energies are quantized d- electron paths are controlled by probability e- both A and C Question (3) A) The first band in the photoelectron spectrum of hydrogen, H ₂ , occurs close 15.4 eV and consists of a progression of peaks separated by 285 me corresponding to transitions to excited vibrational states of the H ₂ ⁺ ion. Calculat the wavenumber of the vibration of the lowest electronic state of the H ₂ ⁺ ion. marks) B) The first ionization energy of nitric oxide, NO, is 9.27 eV. Calculate the velocity the photoelectrons ejected when a sample of nitric oxide gas using radiation energy 21.22 eV from a helium lamp source. (5 marks) C) Calculate the vibrational frequency and energy in Joules per mole of a norm mode in its ground state of n=0 for CO, the force constant k = 1.86X10 ³ kgs ⁻² (5 marks) D) Write short notes about Raman spectroscopy(10 marks) 1 e.v = 1.602 * 10 ⁻¹⁹ 1 amu = 1.66x10 ⁻²⁷ kg h = 6.63x10 ⁻³⁴ J•s	20	
c- electron energies are quantized d- electron paths are controlled by probability e- both A and C Question (3) A) The first band in the photoelectron spectrum of hydrogen, H ₂ , occurs close 15.4 eV and consists of a progression of peaks separated by 285 me corresponding to transitions to excited vibrational states of the H ₂ ⁺ ion. Calculat the wavenumber of the vibration of the lowest electronic state of the H ₂ ⁺ ion. marks) B) The first ionization energy of nitric oxide, NO, is 9.27 eV. Calculate the velocity the photoelectrons ejected when a sample of nitric oxide gas using radiation energy 21.22 eV from a helium lamp source. (5 marks) C) Calculate the vibrational frequency and energy in Joules per mole of a norm mode in its ground state of n=0 for CO, the force constant k = 1.86X10 ³ kgs ⁻² (5 marks) D) Write short notes about Raman spectroscopy(10 marks)		
d- electron paths are controlled by probability e- both A and C Question (3) A) The first band in the photoelectron spectrum of hydrogen, H ₂ , occurs close 15.4 eV and consists of a progression of peaks separated by 285 me corresponding to transitions to excited vibrational states of the H ₂ ⁺ ion. Calculat the wavenumber of the vibration of the lowest electronic state of the H ₂ ⁺ ion. marks) B) The first ionization energy of nitric oxide, NO, is 9.27 eV. Calculate the velocity the photoelectrons ejected when a sample of nitric oxide gas using radiation energy 21.22 eV from a helium lamp source. (5 marks) C) Calculate the vibrational frequency and energy in Joules per mole of a norm mode in its ground state of n=0 for CO, the force constant k = 1.86X10 ³ kgs ⁻² (5 marks) D) Write short notes about Raman spectroscopy(10 marks)		
e- both A and C Question (3) A) The first band in the photoelectron spectrum of hydrogen, H ₂ , occurs close 15.4 eV and consists of a progression of peaks separated by 285 me corresponding to transitions to excited vibrational states of the H ₂ ⁺ ion. Calculat the wavenumber of the vibration of the lowest electronic state of the H ₂ ⁺ ion. marks) B) The first ionization energy of nitric oxide, NO, is 9.27 eV. Calculate the velocity the photoelectrons ejected when a sample of nitric oxide gas using radiation energy 21.22 eV from a helium lamp source. (5 marks) C) Calculate the vibrational frequency and energy in Joules per mole of a norm mode in its ground state of n=0 for CO, the force constant k = 1.86X10 ³ kgs ⁻² (5 marks) D) Write short notes about Raman spectroscopy(10 marks)		
Question (3) A) The first band in the photoelectron spectrum of hydrogen, H ₂ , occurs close 15.4 eV and consists of a progression of peaks separated by 285 me corresponding to transitions to excited vibrational states of the H ₂ ⁺ ion. Calculat the wavenumber of the vibration of the lowest electronic state of the H ₂ ⁺ ion. marks) B) The first ionization energy of nitric oxide, NO, is 9.27 eV. Calculate the velocity the photoelectrons ejected when a sample of nitric oxide gas using radiation energy 21.22 eV from a helium lamp source. (5 marks) C) Calculate the vibrational frequency and energy in Joules per mole of a norm mode in its ground state of n=0 for CO, the force constant k = 1.86X10 ³ kgs ⁻² (5 marks) D) Write short notes about Raman spectroscopy(10 marks)		
 A) The first band in the photoelectron spectrum of hydrogen, H₂, occurs close 15.4 eV and consists of a progression of peaks separated by 285 me corresponding to transitions to excited vibrational states of the H₂⁺ ion. Calculat the wavenumber of the vibration of the lowest electronic state of the H₂⁺ ion. marks) B) The first ionization energy of nitric oxide, NO, is 9.27 eV. Calculate the velocity the photoelectrons ejected when a sample of nitric oxide gas using radiation energy 21.22 eV from a helium lamp source. (5 marks) C) Calculate the vibrational frequency and energy in Joules per mole of a norm mode in its ground state of n=0 for CO, the force constant k = 1.86X10³kgs⁻² (5 marks) D) Write short notes about Raman spectroscopy(10 marks) 1 e.v = 1.602 * 10⁻¹⁹ 1 amu = 1.66x10⁻²⁷ kg h = 6.63x10⁻³⁴ J•s 		e- both A and C
 15.4 eV and consists of a progression of peaks separated by 285 me corresponding to transitions to excited vibrational states of the H₂⁺ ion. Calculat the wavenumber of the vibration of the lowest electronic state of the H₂⁺ ion. marks) B) The first ionization energy of nitric oxide, NO, is 9.27 eV. Calculate the velocity the photoelectrons ejected when a sample of nitric oxide gas using radiation energy 21.22 eV from a helium lamp source. (5 marks) C) Calculate the vibrational frequency and energy in Joules per mole of a norm mode in its ground state of n=0 for CO, the force constant k = 1.86X10³kgs⁻² (5 marks) D) Write short notes about Raman spectroscopy(10 marks) 1 e.v = 1.602 * 10⁻¹⁹ 1 amu = 1.66x10⁻²⁷ kg h = 6.63x10⁻³⁴ J•s 	Q	uestion (3) (25 marks)
the photoelectrons ejected when a sample of nitric oxide gas using radiation energy 21.22 eV from a helium lamp source. (5 marks) C) Calculate the vibrational frequency and energy in Joules per mole of a norm mode in its ground state of n=0 for CO, the force constant k = 1.86X10 ³ kgs ⁻² (5 marks) D) Write short notes about Raman spectroscopy(10 marks) 1 e.v = 1.602 * 10 ⁻¹⁹ 1 amu = 1.66x10 ⁻²⁷ kg h = 6.63x10 ⁻³⁴ J•s		A) The first band in the photoelectron spectrum of hydrogen, H ₂ , occurs close to 15.4 eV and consists of a progression of peaks separated by 285 meV corresponding to transitions to excited vibrational states of the H ₂ ⁺ ion. Calculate the wavenumber of the vibration of the lowest electronic state of the H ₂ ⁺ ion. (5 marks)
mode in its ground state of n=0 for CO, the force constant k = 1.86X10 ³ kgs ⁻² (5 marks) D) Write short notes about Raman spectroscopy(10 marks) 1 e.v = 1.602 * 10 ⁻¹⁹ 1 amu = 1.66x10 ⁻²⁷ kg h = 6.63x10 ⁻³⁴ J•s		B) The first ionization energy of nitric oxide, NO, is 9.27 eV. Calculate the velocity of the photoelectrons ejected when a sample of nitric oxide gas using radiation of energy 21.22 eV from a helium lamp source. (5 marks)
1 e.v = 1.602 * 10^{-19} 1 amu = 1.66x 10^{-27} kg h = 6.63x 10^{-34} J•s		mode in its ground state of n=0 for CO, the force constant $k = 1.86X10^3 kg s^{-2}$. (5 marks)
Atomic weight H= 1, N= 14, O= 16, C= 12		1 e.v = 1.602 * 10^{-19} 1 amu = 1.66x 10^{-27} kg h = 6.63x 10^{-34} J•s h = 1.05x 10^{-34} J•s C = 3.00x 10^{10} cm/s mass of electron = 9.10× 10^{-31}

Mansoura Univ. Fac. Of Sci. Chem. Depart. Subject:Chemistry Course: Org. Chem. 436

Second Term
4th year Chemistry
Level 4, Date, 18/6/2013
Time:2 hrs, Full mark: 80 marks

Polymer chemistry exam:

- 1-(a) Write short notes on three only of the following topics (3x8 marks):
 - (i) Viscosity measurements and its relations.
 - (ii) Polymerization of lactams.
 - (iii) Crosslinking of polymers.
 - (iv) Introduction of new functional groups.
- (b) Explain the mechanisms of Ziegler Natta catalysts for preparation of stereo regular vinyl polymers (12.5 marks).
- 2-(a) Describe the mechanism of polymerization when using the following initiators Na, HCl and HOOH/Fe⁺² in preparation of different vinyl polymers (12 marks).
- (b) Give a brief account on the kinetics of the free radical vinyl polymerization (9 marks).

3-(a) Complete the following sentences (5x1.	.5 marks):
(i) Copolymerization equation is	*****
(ii) {CH₂CH} CH₃OH →	
О СОСНЗ	
(iii) ←CH ₂ CH→ hU	• • • • • • • • • • • •
CO-CH ₃	

(iv) Polybutadiene rubber has Tg room temperature.	
(v) $2(CH_3)_2 \stackrel{\bullet}{C} - CN \longrightarrow$	
(b) Put $\sqrt{\text{ or } X \text{ on the correct answer of the following sentences (5)}}$	x1mark):
(i) P-chlorostyrene gives cationic polymerization ().	7923
(ii) Acrylaldehyde gives cationic polymerization ().	
(iii) Acrylamide gives Ziegler Natta polymerization ().	
(iv) When Mw = Mn the polymer is distributed ().	
(v) Polyvinylchloride has Tg under zero temperature ().	
South in -	
(c) Write only in two of the following subjects, (10 marks):	
(i) Chain transfer in free radical vinyl polymerization (6 marks).	*
(ii) Mechanism of inhibitors (4 marks).	

(iii) Stepwise polymerization (4 marks).

With my best wishes

Prof/ Elsayed Abdel Hamied Abdel Razik

14 0 c hul), has -, las - glolle 1

Mansoura University Faculty of Science

Chemistry Department

Subject:Chemistry

Course(s):Chem.437"Pesticides"

First Term

4th level students

Date: May, 2013

Time Allowed:2hours

Full Mark: 80

Answer the following questions:

1. a) Compare between systemic and non systemic pesticides. (8marks)

b) What are the conditions required for a given candidate chemical to be an effective protectant fungicide? (8marks)

c) Write short notes on: i- LD₅₀ ii- Bordeaux mixture (10marks)

2. a) Give a brief account for each of the following:

i- DDT ii- DNOC iii- 2,4-D

(14marks)

b) Give reasons:

i- Many varieties of maize and sugar cane are resistant to the herbicidal action of triazines. (4marks)

ii- Nicotine kills vertebrates. Show the mode of action for the observed toxic symptoms. (6marks)

c) Draw the chemical structure for each of the following pesticides and mention its main function (insecticide, fungicide or herbicide).

i-Profenofos ii-Thiram iii-Simazine iv-Schradan. (12marks)

3. Show by equations how the following pesticides could be prepared.

a) Chlorobenzilate

b) Karathane (dinocope)

c) Asulam (Asulox)

d)Paraoxon.

(18marks)

GOOD LUCK

Dr.D,S.Badawy

ANSWER SHEET DChoose the most correct answer:-

No.	a	b	C	d	e
1	x Carlle X selec	M. C. Carrell	1	, 500 A JA	15 P 15 P 100
2	A WARNET	San Salandaria	M. M. Ca	at divides	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3	e want	A STATE OF THE PARTY OF	section for	THE VEHICLE COMP	A STANSON
4	A AND ALL AND A	- dissipantish	Southed water The	germenage bisk	Mark with
5	82 July 28 July 2011	Carena deserva		y 20.20 Ph. 3	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
6					
7	Co. Sections		1	C - 4 - 5	
8	State of the	1 100000			
9	NOT THE SHOP THE PARTY	1.		a 100 - 100 - 100	
10					

II)True and Faulse; circulate the suitable response:-

No.	T	F
1		
2		1,199
3	Shirt TEL	Stage and the
4	an and the grant designs	grant of the state
5	Sec.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6	3 2	
7	e mental est la	A RAPPER TO
8	e to produce the	Companies of
9	CO SANTANA SANTANA	y to discuss the
10	C MINISTS	1000

III) Matching from column (A) to column (B):-

No.	1B	2B	3B	4B	5B	6B	7B	8B	9B	10B
1A	1. 1	100		3			v			
2A									*	
3A										
4A										
5A										
6A										
7A										
8A	100	3								
9A						la la				
10A	-							1		

Mansoura University
Faculty of Science
Chemistry Department
Subject: Chem 422
Symmetry and Group Theory)

Second Semester Level 4; Chemistry
Date: 20th May 2013
Time: 2 hours
Marks: 80

Answer the following questions 1) Choose the most correct answer:- (20 marks)
1) point goup of Staggered (CH ₃) ₂
a) C_{3h} b) D_{5d} c) D_{3d} d) D_{3h} e) C_{5d}
2) is belonged to D_{3h} family
a) B(OH) ₃ b) NH ₃ c) BCl ₃ d)BH ₃ e) c & d
3) Formaldehyde has
a) C_2 b) σv c) C_s d) C_2 , σv , C_s e) C_2 , σ_v , C_{2v}
4) In the molecule, CO ₂ , ν_s (CO) stretch is
a) Active IR and Raman b) Active IR only c) Active Raman only
d) In-active IR and Raman e) Non of the above is correct
5) Acetone has point group
a) C_{3v} b) C_{2h} c) D_{2d} d) C_{2v} e) D_{2h}
6) Number of contributed atoms in acetone in σv mirror-plane is
a) 1 b) 2 c) 3 d) 4 e) 0
7) The molecule ClF ₃ ; has characters
a) C ₃ , E, σv b) E, $3\sigma v$, i c) E, $2\sigma v$, C ₂ d) E, i, $2\sigma v$
e) C ₂ , 3σy

8) In the molecule CH	3Cl, the number of unshif	ted atoms through	n ov is
a) 0 b) 1	c) 2	d) 3	e) 5
9) cis-[PdCl ₂ (CO) ₂] sl stretches	nows while its tra	uns analogue sho	ws
a) 7, 7 b) 3	, 1 c) 2, 2	d) 2, 1	e) 1,
10) SO_4^{2-} and FeO_4^{-} and	ions have and	point groups	
a) C_{4v} , T_d b) T D_{4d}	C_d , T_d c) T_d , D_{4h}	d) T _d , D ₄	e) T
•••••	•••••	•••••	
II)True and Faulse; ci	rculate the suitable respo	nse:- (20 marks)	action.
1-T - F POCl ₃ has	$g(\sigma = 4)$ characters	90-(6	
1 1 10013 1141	(g 4) characters		
	and the state of t		selt at (%
2-T - F POCl ₃ has	D _{3d} point group		
		ISBNIRAL CHANGES	
3-T-F SO ₂ shows	three vibration motions		
	201 10 Heat (a		
4-T - F In the mol	ecule POCl ₃ , <u>SIX</u> vibration	on absorptions are	e calculated
5-T - F In NRr. m	olecule, the effect of symi	netry rotation ah	out z- avis is (F
	$+1$, $\sigma v = -1$).	netry rotation abo	Jut 2-unis is (E
6-T - F TiI4 molec	ule has C _{4V} point group.	ermidi ninca la m	
7- T - F O ₃ shows a	active v_s , v_{as} and δ - IR an	d Raman bands	
8-T - F TiI ₄ has a	ctive v _s (Ti-I) IR and Rama	an bands	ant ell.
1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		word Stide Vi	
9- T - F [CuCl ₅] ³⁻ l	nave point groups of D _{5h}		- 1 1 1 1 a

10- T - F CO has active ν_s IR and Raman stretching vibration bands

III)Matching from column (A) to column (B):- (20 marks)

Syr. A	Qavr?	Syr. B	
1A	Carbon disulfide has	1B	\mathbf{D}_{5d}
2A	Sulfur trioxide has	2B	D_{5h}
3A	$\widehat{\Omega}$	3B	$\mathbf{D}_{\infty h}$
	Fo		
	Fe	* *	
4A	Benzene ring	4B	6
5A		5B	C _{3h}
	Fe		
6A	Boric acid	6B	I _h
7A	Total number of	7B	T_d
A 8 B	vibration motions of POI ₃ is		
8A	NH ₄ ⁺	8B	+1
9A	New coordinate for σ is	9B	$C_3 \underline{l} C_2$
10A	$[Ce(NO_3)_6]^{2-}$	10B	$\mathbf{D_{3h}}$

IV) Answer the following question:- (20 marks)

In the molecules formaldehyde and Nitrogen trichloride; Please find

- a) Reducible representations
- b) Total number of freedoms
- c) Number of translation and rotation motions
- d) Number of vibration motions
- e) Discuss the active and inactive IR spectral data

Character table for C2v point group

	E	C ₂ (z)	σ _r (xz)	σ _τ (yz)	linear, rotations	quadratic
$\mathbf{A_1}$	1	1	1	1	Z	x^2, y^2, z^2
A ₂	1	-1	-1	-1	Rz	ху
B ₁	1	-1	1	-1	x, Ry	XZ
B ₂	1	-1	-1	1	y, R _x	yz

Character table for C_{3v} point group

	E	2C ₃ (z)	3σγ	linear, rotations	quadratic
Aı	1	-1	1	z	x^2+y^2, z^2
A ₂	1	1	-1	Rz	
E	2	-1	0	(x, y) (R _x , R _y)	$(x^2-y^2, xy)(xz, yz)$

Character table for C2h point group

	E	C ₂ (z)	i	σh	linear, rotations	quadratic
Ag	1	1	1	1	Rz	x^{2} , y^{2} , z^{2} , xy
Bg	1	-1	1	-1	R _x , R _y	xz, yz
Au	1	1	-1	-1	z	
Bu	1	-1	-1	1	x, y	

Best Wishes
Prof.Sahar Mostafa

[Lievelle airon x1 chex! - le a 2 1/100 [

Mansoura University **Faculty of Science Chemistry Department** Subject: Chemistry Course(s): Inorganic Chemistry

424

Second Term Fourth Year Chem. Time Allowed: 2 hours Full Mark: 80 Marks **Date:** May, 2013

Answer The Following Questions

1. a) Put (ν) or (X) on the following

[10 Marks]

- i) us may augmented or diminished by an orbital contribution
- ii) xdiam. Varies inversely with T
- iii) xparam. Is an induced property
- iv) The sizes and shapes of the orbitals in the closed shells are not temperature dependent
- v) $\frac{B}{H_0}$ called the magnetic susceptibility
- b) The direct metal metal interaction gives lower us values via over lap of suitable metal orbitals. Explain with examples? [5 Marks]
- c) Explain the curie law and curie weiss law. Indicate the significance of the weiss constant θ ? [5 Marks]
- 2. i) What corrections do we need for the calculation of χM^{corr} ? [20 Marks]
 - ii) Which of the following complexes will be more intense in color. Why? trans $[Co(en)_2Fe]^+$ and cis- $[Co(en)_2F_2]^+$
 - iii) What is cross over region? A metal complex is close to the cross over region will it's magnetic moment be anomalous?
 - iv) d² ion and a d⁸ ion have the same Russel- Saunders symbol but not the same J value. How?
- 3. a) Discuss the spectra of Mn(II) Oh complex ions. [6 Marks]
 - b) Explain which of the following ions: 3d5, 3d7 and 3d8 in their HS and LS will have orbital contribution to their spin only moments? [10 Marks]
 - c) The Racah parameter B is 460Cm⁻¹ in [Co(CN)₆]³⁻ and 615 Cm⁻¹ in [Co(NH₃)₆]³⁺. Consider the nature of bonding in the two complexes and explain the difference in [4 Marks] nephelauxetic effect.
- **4. a)** The UV/Vis absorption spectrum for $[VCL_6]^{4-}$ shows three d-d absorption bonds at 8000, 13000 and 20000 Cm⁻¹. Assign the bands to specific electronic transition using the correlation diagram of d³ ion.
 - b) What is the molecular term symbol for the following configurations and complexes?

 - i) Oh complexes: $t_2g^3eg^0$, $t_2g^3eg^1$ ii) Td complexes: e^2 , $e^2t_2^2$, $e^4t_2^5$ iii) GS of $[Co(H_2O)_6]^{3+}$ in HS and LS

[6 Marks]

c) Discuss the advantages and disadvantages of Gouy method and faraday method.

[4 Marks]

Mansoura University
Faculty of Science
Chemistry Department
Subject: Organic synthesis Chem 435

First Term

4th Year: Chemisry Students

Date: May 2013 Time allowed: 2 h Total Marks: 60 marks

Answer the following questions:

1) Disconnect the following compounds [4 marks for each]

2)

- a) Briefly explain the utility of enamines. [10 marks]
- b) Suggest a mechanism? [10 marks]

a) Starting from Phthalic acid and by using other suitable reagents, how could you prepare the following compound [8 marks]

b) Suggest a synthesis for the following compounds [3 marks for each]

With our best Wishes

Examiners:

Dr. M.Monier

11 = 20 14. Juday. Magay = 6275

Mansoura University
Faculty of Science
Chemistry Department
El- Mansoura, Egypt

جامعة المنصورة كلية العلوم قسم الكيمياء منصورة ــ مصر

Second Semester: Final Exam. 2013

Educational Year: Fourth Year

Course (s): Carbohydrates Chemistry

Date: 8 June/ 2013

Course Code: Chemistry 434

Subject: Chemistry

Full Mark: 80 Time: 2 Hours

1- a- Monosaccharide A in the following scheme is a D-aldopentose. Compound E does rotate plane-polarized light, wherease compound B and F do not. Show the structures of A, B, C, D, and E. [10 Marks]

$$A \xrightarrow{\begin{array}{c} 1) \text{ HCN, [NaCN]} \\ \hline 2) \text{ H}_2\text{O, NaOH} \\ \hline 3) \text{ HCI} \\ \hline 4) \text{ Na (Hg)} \\ \hline B \\ \hline E \\ \hline F$$

b- Discuss the effect of Both Tosyl chloride and Periodic acid on Monosaccharide A. [10 Marks]

2-a- Explain by equation conversion of D-arabinose to higher aldose & ketose. [5Marks]

b- Starch is a polysaccharide contains amylose and amylopectin used for energy storage in plant.

i-Describe the type of glycosidic bond in it. [5Marks]

ii-What the effect of both HNO₃ and trityl chloride on aldose-monosaccharide units obtained by hydrolysis of starch. [5Marks]

- c-Sucrose and Lactose are disaccharides; which of them does not undergoes Mutarotation? [5Marks]
- 3- The Following disaccharides consisting of two monosaccharide units:
- i- Draw the Fisher projection and Haworth formulation of the hydrolyzed monosaccarides of compound 2. [5Marks]
 - ii- Which of these disaccharides has reducing power (explain by equations in compound 3). [5 Marks]

iii - Elucidate the Point of attachment in compound 1. [5Marks]

iv-Describe the type and point of attachment of each glycosidic bond in all disaccharides. [5Marks]

- 4- a- Explain by equation, how you can proof of glucose stereochemistry. [5Marks]
 - b- Determine the structure of lactose. [5Marks]
 - c- Convert of the following: [5Marks]
 - i- D-Ribose to D- arabinose
 - ii- Glucose to Fructose
 - d- Formation of osatriazole from D-Fructose. [5Marks]

Best regards,

Prof. Dr. Wafaa S. Hamama & Dr. Mona El-Sayed

الم يؤدا العام حيمار - العام القالفانية عرامات ما العانية مرا ما عسفات

Mansoura University
Faculty of Science
Chemistry Department
Subject: Mechanism of Inorganic
Substitution Reactions
Course Symbol: 423 Chem

Chemistry Students
Exam date: 11.06.2013A
Allowed time: 2 hours
Total marks= 80
Level: 4th

Final Exam for 4th Level Chemistry Students

Answer the	Following Questions: nort notes on only two of the following: -	(10 Marks)
	erg's theory.	la de la companya de
$h) \pi - hor$	nding theory.	
c) Garrick	's explanation for S _N 1 dissociation mechanism of the	reaction
of [Co(e	$en)_2(Cl)NO_2]^++SCN^- \longrightarrow [Co(en)_2(SCN)NO_2]^++Cl^-$ e rate constant expression of the given reaction showings:	
	$[Pt(dien)Cl]^++Y \longrightarrow [Pt(dien)Y]^++Cl^-$	
a) Acid h pH b) Aquati much c) Electro and 3) Give the a) Cis [Pt(PI	e the following statements:- ydrolysis or	echanism. s proceed by aisor
1) True an	nd false (circulate the correct response): S _N 1CB and S _N 2 displacement mechanisms in DMSC	(12 Marks) O follow the same
<i>w</i>) 1 1	rate laws and give the same hydroxo product.	
b) T – F	Substitution reactions of Pt(II) square planar comple	xes are not
<i>o)</i> -	stereo-specific.	
c) T – F	Chatt and Orgetl's theory explained the trans effect	of groups such as
	C ₂ H ₅ NO ₂ and SCN.	
d) T – F	Substitution of ammonia by polyamine in [Co(NH ₃)) ₅ Cl] ²⁺ complex
	increases the rate of aquation.	
		Please turn over→

4)Arrange the following in the order of increasing the property indicated in Brackets indicating the reasons if it is possible (20 Marks)

a) cis-[Co(NH₃)₄Cl₂]⁺ &cis-[Co(tren)(NH₃)Cl]²⁺.

b) [Co(NH₃)₅OAc]²⁺& [Co(NH₃)₅NO₃]²⁺.

c) $[Pt(NH_3)(NO_2)Cl_2] \& [Pt(NH_3)(p-ClC_6H_5)Cl_2].$

(Rate of aquation)
(Rate of aquation)
(Rate of substitution)

e) trans
$$\begin{bmatrix} PEt_3 \\ L-Pt-CI \\ PEt_3 \end{bmatrix} + Py \underbrace{\frac{25^0C}{EtOH}}_{EtOH} trans \begin{bmatrix} PEt_3 \\ L-Pt-Py \\ PEt_3 \end{bmatrix} + CF$$

 $L=C_2H_4$, NO_2^- , Br^- , Cl^-

- i) (Trans directing ability of the group).
- ii) K_1 and K_2 (min⁻¹).

f)
$$\begin{bmatrix} CI \\ Py - Pt \\ (2) \end{bmatrix} & & \begin{bmatrix} Br \\ Py - Pt \\ (2) \end{bmatrix} \\ CI \\ (a) & (b) \end{bmatrix}$$

- i) Bond length of bond(1):....>....
- ii) Bond length of bond (2):............

With Best Wishes
Dr.O.El-Gammal

۲

YICO cileational - of a company

Mansoura University
Faculty of Science
Chemistry Department
Subject: Chemistry

Course(s): Electro-analytical & Chromatography Chemistry 312

Second Term
Third Level Chemistry
Time Allowed: 2 hours
Full Mark: 60 Marks
Date: Juna, 13, 2013

Answer The Following Questions

1a). Define the following

[6 Marks]

a) Mercury cathode

b Ilkovic equation

c) Diffusion current

c) Selectivity co-efficient

d) Enzyme electrodes

e) Mediator

b)- Give an account on the following:

[9 Marks]

- i) The factors affecting the liquid junction potential. Explain how it could be minimized
- ii) Effect of complex formation on the half wave potential and calculation of formation constant.
- iii) The construction and theory of fluoride ion selective electrode

2-a) Discuss briefly the advantages of:

[10 Marks]

- i) The application of coulometric titrations compared to conventional titrations
- ii) Using differential pulse polarography compared to conventional and normal pulse polarography
- iii) Using dropping mercury electrode
- iv) Application of ion selective electrodes for trace analysis
- b) A 2.16g of an insecticide sample was decomposed and the arsenic content was reduced to to the trivalent state. As(III) was oxidized with electrogenerated I_3^- in faintly alkaline medium $AsO_3^{3-} + I_3^- + H_2O \leftrightarrow AsO_4^{3-} + 3I^- + 2H^+$

The titration was completed after a constant current of 87.6 mA had been passed for 4 min. and 42 sec. Express the results of this analysis in terms of %As₂O₃ in the original sample.

[5 Marks]

 $PT.O \rightarrow$

إقلب من فضلك الصفحة

Section (B)

Discuss the following:

- a) A 100 sample of a pollutant (1PPM) with M.W. = 100, was extracted with 100ml solvent. The remained concentration = 10⁻⁶M. Calculate D and the total amount extracted after 4 times. What types of detectors that should be used if the pollutant is pesticide or radioisotope.
- b) i) State five distinct stationary phases with their chemical constitution
 - ii) How we avoid disadvantages in gel-chromatography.
- iii) Tr or Vr is a constant value at and used for of analytes.
- iv) Show the conditions where D and K becomes similar (give example).
- v) Depict Soxhlet apparatus and how it function.
- vi) The conditions necessary to determine metal ions in gas chroatography. (Give examples)
- vii) Effect of PH.
- c) Discuss and compare between two of the most sophisticated techniques in chromatography.

Prof. Dr. Ahmed El-Wakil Prof. Dr. Magdi Khalifa

Mansoura University Faculty of Science **Chemistry Department**

Course: Physical Chemistry

Date: 15/06/2013

Second term Examination

Subject: Spectroscopy

Fourth Level

Full Mark: 80 Marks Time Allowed: 2hours

. "			the table blew انقل الاجابة الصحيحة فقط في ا	
Answer of Frist question (complete)		Answer of Second question (MCQ)		
1		1		
2		2		
3		3		
4		4		
5		5		
6		6		
7		7		
8	· · · · · · · · · · · · · · · · · · ·	8		
9		9		
10		10		
11		11		
12		12		
13		13		
14		14		
15		15		
de		16		
		17		
		18		
		19		
		20		