الفصل الدراسى الثانى ٢٠١٣ الزمن: ساعتان التاريخ: ٢٠١٨/٥/٢٨

كلية العلوم – قسم الرياضيات المستوى الرابع البرنامج: الرياضيات البرنامج: الرياضيات المقرر: (۲) تحليل مركب (۲) (خ)

Answer the following questions:

1. a. Prove that
$$\int_{0}^{\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}$$

(10 marks)

b. Prove that
$$\int_{0}^{2\pi} \frac{d\theta}{1 + a \sin \theta} = \frac{2\pi}{\sqrt{1 - a^2}} (|a| < 1)$$
 (10 marks)

2. a. Define pole of order m at $z = z_0$. If f(z) has a pole of order m at $z = z_0$. Prove that

Res[f,z₀] =
$$\lim_{z \to z_0} \frac{1}{(m-1)!} \frac{d^{(m-1)}}{dz^{(m-1)}} [(z-z_0)^m f(z)]$$
 (10 marks)

b. Find Laurent expansion for $f(z) = \frac{z + \cos z}{z^3}$ about z = 0. (5 marks)

c. If w = f(z) is analytic function. Then prove that $\frac{\partial(u,v)}{\partial(x,y)} = |f'(z)|^2$.

(5 marks)

3. a. Find the bilinear transformation that transforms z = 0,1,-2 to $w = \infty,1,i$, respectively. (10 marks)

b. Prove under $w = \frac{1}{z}$ straight lines and circles are mapped onto straight lines or circles. (5 marks)

c. Find the image of x + 2y - 1 = 0 and x - 2y + 1 = 0 under $w = \frac{1}{z}$.

(5 marks)

4. a. Prove that $f(z) = \cos z$ not bounded. Find the image of $\frac{-\pi}{3} \le x \le \frac{\pi}{3}$ and y = 0 under $w = \cos z$ (8 marks)

b. Describe a Riemann surface for $w = z^{\frac{1}{3}}$. (8 marks)

c. Define analytic continuation of w = f(z). (4 marks)

مع تمنياتنا بالنجاح والتوفيق

الممتحن: أ.د./ محمد كمال عبد السلام عوف

Answer the following questions

First: Objective questions:

(20 marks)

Among the following statements mark the true and false ones with $(\sqrt{\ })$ and (\times) respectively. Justify your answer for ONLY_TWO of them:

- (ii) For any sequences $(\alpha_n), (\beta_n) \in \ell^2$ we have

$$\sum_{n=1}^{\infty} \left| \alpha_n \beta_n \right| \leq \left(\sum_{n=1}^{\infty} \left| \alpha_n \right|^2 \right)^{\frac{1}{2}} \cdot \left(\sum_{n=1}^{\infty} \left| \beta_n \right|^2 \right)^{\frac{1}{2}} \cdot \dots ()$$

- (iv) Any subspace of a Banach space is also a Banach space.()
- (v) If $A = \{x_1, x_2, x_3, x_4, x_5, x_6\} \subseteq \ell^{\infty}$, it follows that the linear hull H(A) is separable.()
- (vi) For any normed spaces E,F over K, the space L(E,F) is a Banach space.()
- (viii) Any two linearly homeomorphic normed spaces are linearly isometric.()
- (ix) Every linear operator $T: R \to R$ is continuous on R.
- (x) The space ℓ^4 is linearly homeomorphic to the space K^4 ()

Second: Subjective questions

(20 marks each)

[1] a. Define: a metric space – the space ℓ^p .

[4 marks]

Show that, for $p \ge 1$, and for all (α_n) , $(\beta_n) \in \ell^p$, the sequence $(\alpha_n + \beta_n)$ belongs to ℓ^p , and

$$\left(\sum_{n=1}^{\infty}\left|\alpha_{n}+\beta_{n}\right|^{p}\right)^{\frac{1}{p}}\leq\left(\sum_{n=1}^{\infty}\left|\alpha_{n}\right|^{p}\right)^{\frac{1}{p}}+\left(\sum_{n=1}^{\infty}\left|\beta_{n}\right|^{p}\right)^{\frac{1}{p}}.$$
 [10 marks]

b. Let X be a non-empty set. A mapping L: $X \times X \to R$ satisfies the following conditions:

(i) L(x,y) = 0 if and only if x = y, and (ii) $L(x,z) \le L(y,x) + L(y,z) \quad \forall x,y,z \in X$. Prove that L is a metric on X. [6 marks]

a. Define: a separable space.

[2 marks]

Show that, for p > 1, the space ℓ^p is separable. [8 marks]

b. Let E,F be normed spaces over K, $E \neq \{0\}$, and let T:E \rightarrow F be a linear mapping of E onto F. Prove that T is one-to-one and T^{-1} is bounded if and only if there is a constant m > 0 $||Tx|| \ge m$ for all $x \in E$ with ||x|| = 1. [10 marks]

[3] a. If T: $\mathbb{R}^3 \to \mathbb{R}^3$ is defined by $T(\alpha, \beta, \gamma) = (\alpha - \gamma, 2\alpha + \gamma, 3\beta)$; show that T is a bounded linear operator on \mathbb{R}^3 , and then find $\|T\|$.

b. Show that if E is a finite-dimensional normed space, then E is a Banach space, and every linear transformation $T: E \rightarrow G$ is bounded. (G; being any normed space) [11 marks]

دور مايو: ۲۰۱۳ الزمن: ساعتان المادة: ميكانيكا متقدمة كود المادة: ر۲۲۶ التاريخ: ۲۰۱۳/٦/۲۰

كلية العلوم قسم الرياضيات المستوى: الرابع شعبة:الرياضيات الدرجة الكلية: ٨٠ درجة

أجب عن الأسئلة الأتية

الســـوال الأول: [20 درجة]

١) أذكرمع البرهان تفسير بوانسو الهندسي لحركة الجسم المتماسك في حالة أويلر.

رجة] k < 1 المسورة القياسية التكامل $z = \int_0^x \frac{\mathrm{dt}}{\sqrt{\cos t}}$ أختزل إلى المسورة القياسية التكامل $z = \int_0^x \frac{\mathrm{dt}}{\sqrt{\cos t}}$

الســــفال الثانى: [20 درجة]

ا) استخدم تكامل المساحة ومعادلات بواسون للتعبير عن متجه السرعة الزاوية بدلالة γ وتفاضله بالنسبة للزمن على الصورة $\omega = \frac{f \, \gamma + \dot{\gamma} \times \gamma I}{\gamma I \cdot \gamma} = \omega$ حيث γ ثابت إختيارى.

البينما $|r_0| < \frac{2\sqrt{mgAz_0}}{C}$ بينما غير مستقر إذا كان $|r_0| < \frac{2\sqrt{mgAz_0}}{C}$ بينما غير مستقر إذا كان $|r_0| > \frac{2\sqrt{mgAz_0}}{C}$ هي السرعة الزاوية للدوران وأن $|r_0| > \frac{2\sqrt{mgAz_0}}{C}$ عزوم القصور الرئيسية و $|r_0| > \frac{2\sqrt{mgAz_0}}{C}$ هو بعد مركز ثقله عن النقطة الثابتة.

الســــوال الثالث: [20 درجة]

أذكر الحالات القابلة للتكامل لجسم متماسك مثبت من نقطة ويتحرك تحت تأثير وزنه فقط. [3درجة]
 إستنتج التكامل الأول الرابع في حالة كوفالفسكايا.

٣) أوجد المحل الهندسي للمحاور المارة بالنقطة O والتي تتساوى عزوم القصور الذاتي حولها لجسم متماسك إختياري و متماثل محوريا

السوال الرابع: [20 درجة]

ا) عرف الجيروسكوب- الجيروستات ثم إستنتج معادلات حركة الجيروستات وذلك بإعتبار سرعة دوران الجيروسكوب ثابتة.

O نحلة منتظمة كتاتها m وتتحرك حول نقطة ثابته فيها O على محور تماثلها وكان بعد مركز ثقلها عن O يساوى و عزوم القصور الرئيسية هى A,A,C فإذا بدأت النحلة حركتها عندما كان محورها رأسيا إلى أعلى والسرعة الزاوية للنحلة حول محورها $n^2C^2=3mglA$ فإن أقصى ميل لمحور النحلة على الرأسى هو $\frac{\pi}{3}$

مع أطيب الأمنيات بالنجاح و التوفيق أ.د/حمد حلمي يحيي

Chiply - cull on 11 rce, apidles - mesheel

دور مايو 2013

الزمن: ساعتين

التاريخ : 3 / 2013

كلية العلوم - قسم الرياضيات

برنامج: الرياضيات- الاحصاء وعلوم الحاسب

الفرقة: الثالثة

المادة : دوال خاصة

كود المادة: 324

الدرجة الكلية: 80 درجة

اجب عن الاسئلة الاتبة

السؤال الاول: (20 درجة) احسب التكاملات الاتية

 $\int e^{-t^2} dt - (1)$

$$\int_{0}^{\infty} \frac{1}{1+y^4} \, dy - (\mathbf{y})$$

$$\Gamma(2x) = \frac{2^{2x-1}\Gamma(x)\Gamma(x+\frac{1}{2})}{\sqrt{\pi}}$$
 اثبت ان (ح)-(ح)

السؤال الثاني: (20 درجة)

$$_{2}F_{1}(\frac{1}{2},1,\frac{3}{2},z^{2}) = \frac{1}{2z}\log\frac{1+z}{1-z}$$
 اثبت ان -(۱)

(ب)- اوجد
$$P_3(x)$$
 حیث $P_1(x)=x$ و $P_2(x)=1$ هی کثیرة حدود لیجندر) (ب)

$$P_1(x) = x$$
 $P_0(x) = 1$ $P_3(x)$ $P_3(x)$ $P_3(x)$

$$f(x) = \begin{cases} 1 & 0 \le x < 1 \\ 0 & -1 \le x < 0 \end{cases}$$
 اوجد مفكوك الدالة

$$\sum_{m=0}^{\infty} A_m P_m(x)$$
 في الصورة

السؤال الثالث: (20 درجة)

$$J_{-n}(x) = (-1)^n J_n(x)$$
 اثبت انة عندما n عدد صحیح فان

$$\int J_1(\sqrt[3]{x})dx$$
 اوجد قیمة

$$4J_0''' + 3J_0'' + 3J_3 = 0$$
 اثبت ان -(ج)

السؤال الرابع: (20 درجة) $L_2(x)$ ومن ثم اوجد الأكر صورة ردريجيوس لكثيرات حدود لاجير الأمر ومن ثم اوجد $L_2(x)$ (6 درجات)

$$L_n(x) = n! \, {}_1F_1(-n,1,x)$$
 اثبت ان .3

مع اطيب التمنيات بالتوفيق والنجاح د. عبد المنعم لاشين

Mathematics Department

Date: 11-6-2013 Full Mark: 80

Faculty of Science

4th Final Exam. Mathematics group Partial Differential equations R 429 alicios les

Answer the following questions, each question 20 marks

[1]a) Show that the Dirichlet problem $\nabla^2 \mathbf{u} = 0$ in \mathbf{R} , $\mathbf{u}|_{\mathbf{S}} = \mathbf{f}$ has a unique solution, where \mathbf{R} is a region in the xy-plane, \mathbf{S} is the boundary of \mathbf{R}

b) Find D' Alembert's solution of the wave equation $\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}$ subject

to the Cauchy initial conditions u(x,0)=f(x) and $\left(\frac{\partial u}{\partial t}\right)_{t=0}=g(x)$ and show that the problem is well – posed.

[2] Show that the solution of the equation $x^2 \frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}$, c is a const.

which satisfies the boundary conditions u(a, t)=u(2a,t)=0 is

$$u(x,t) = \sin \left[\lambda \ln \left(\frac{x}{a} \right) \right] \left(\frac{x}{a} \right)^{1/2} (A \cos \omega t + B \sin \omega t).$$

Where $\omega^2 = c^2(\lambda^2 + 1/4)$, $\lambda = n\pi/\ell n2$, n is a positive integer.

[3] Find the solution of the heat conduction equation $\nabla^2 u = \frac{1}{k} \frac{\partial u}{\partial t}$ in R,

where R is a circular region of radius a subject to the boundary conditions u(a,t)=0, $t\geq 0$ and u(r,0)=f(r), $0\leq r < a$

[4]a) Show that the solution of Laplace's equation $\nabla^2 u = 0$ in the region x > 0, 0 < y < a satisfying u(x,0) = f(x) and u(x,a) = 0 where f(x) is a given function, and a is a constant is

$$u(x,y) = \frac{1}{\pi} \int_{0}^{\infty} \int_{-\infty}^{\infty} \frac{\sinh \lambda (a-y)}{\sinh \lambda a} f(\xi) \cos \lambda (\xi - x) d\xi d\lambda.$$

b) By using Laplace's transform method, solve the equation $\frac{\partial u}{\partial t} + x \frac{\partial u}{\partial x} = x \quad , \quad (x > 0 \ , \ t > 0) \quad \text{where } u = u(x,t), \text{ given the boundary }$ conditions u(x,0) = 0 for x > 0 and u(0,t) = 0 for t > 0.

د.محاسن موسى

مع أطيب الأمنيات بالنجاح والتوفيق إن شاء الله

[] 564, 2016 - 1-10/1943, Nest - 2-10/105-11

Mansoura University
Faculty of Science
Mathematics Department

Final exam Second term May 2013

4th level students (Mathematics / Statistics and computer Science programme) Subject: Math 426 (Modelling and Simulations)

Date: 08 /06/2013

Time allowed: Two hours

Answer the following questions:

Total marks: 80

Question one:

- A) Write down and find the equilibria for each of the following difference equation models: the Beverton-Holt model, the Ricker model, and the Nicholson-Bailey model.

 (10 marks)
- B) Construct a mathematical model to describe the competition between two species. Explain your model, find the steady states and discuss their stability.

(10 marks)

Question two:

- A) Write down a discrete-time model for measles with vaccination. (5 marks)
- B) Construct an SIS model for an infection spreading in a closed population with varying size. Explain your model, find the steady states and discuss their stability.

 (15 marks)

Question three:

- A) Write down both the von Bertalanffy and Gompertz models for the tumour growth.

 (5 marks)
- B) Prove that in a large spherical tumour there is a shell of proliferating cells, whose thickness depends on the excess nutrient concentration above a threshold $(c_2 c_1)$, how fast the nutrient is consumed k and how fast it diffuses D, but not on the size of the tumour itself.

 (15 marks)

Question four: (20 marks)

Construct an SIRS model for an infection spreading in a closed population with constant size and study the possibility to vaccinate the susceptible individuals with rate ψ . Find the critical age above which susceptible individuals should be vaccinated to protect the population from the infection.

Best regards, The examiner Dr. Muntaser Safan دور مايو 2013 الزمن: ساعتان المستوى الرابع رياضيات هيدروديناميكا

جامعة المنصورة كلية العلوم قسم الرياضيات

Answer the Following Questions:

1) a- State, with proof, the continuity equation.

b- Show that $\psi = U \sin \theta (r - \frac{R^2}{r})$ represents the stream function a 2-dimensional flow of an incompressible irrotational flow and find the corresponding velocity potential.

- 2) a- Deduce the Bernoulli's theorem for unsteady irrotational flow under a conservative force field. b- The radius of a sphere immersed in an infinite ocean of liquid varies according to the relation $r=A+a\cos nt$; A, a, n constants. If the velocity potential has the form $\phi=\frac{(f(t))}{r}$, find f(t) and the maximum pressure attained on the sphere assuming that $A \leq 5a$.
- 3) Two sources each of strength m are placed at the points (-a, 0) and (a, 0) and a sink of strength 2m is placed at the origin, show that the streaming lines are the curves $(x^2-y^2)^2-a^2(x^2-y^2+2\lambda xy)=0$ where λ is a parameter.
- 4) Use the method of separation of variables to find the velocity potential of a system of a sphere of radius a and uniform stream U. Find the equation of the stream lines and the pressure at any point on the sphere.

د/ فرود عد الحسيط

El-Mansoura- Egypt	Fourth level of B.Sc.	مصر	المنصورة –
Mansoura University Paculty of Science Mathematics Department econd Term	rogram: Math. and Statistics & Computer Science Subject: Graph Theory Course Code 412: Date: 1 June. 2013	يات	جامعة المنص كلية العلوم قسم الرياض 2 hours
four answer the following fire qu	uestions:		Mark
a- Find the number of edge	E(G) of the graph G (10 points	each ite	m 2 points)
of each of:			
 (ii) Regular graph G of G (iii) A complete rooted 2 (iv) G is a tree with 2n 		s and no	triangles.
b- Give an example of each	of: (10 points	s each it	em 2 points
(iii) A graph with n verti	digraphs with 3 vertices and 3 arcs. lices and its diameter = n -1, for each +ve integral h) $g(G) = n = c(G)$ (circumference) for each		ger <i>n</i> .
Prove that a graph G is reg	gular of order $2 \Leftrightarrow$ each component of G is a	cycle.	(8 points
b - Prove that In any graph the number of vertices of odd degrees is even.			(6 points
- Is there a complete roote	ed 2-tree with even number of vertices? why?		(6 points
- If G is a plane graph with	k components, n vertices,		(10 points
- Show that the complete graph then prove that \mathbf{K}_n is a	prove that $n - m + r = 1 + k$. Taph K_5 is nonplanar and nonplanar graph for each $n \ge 5$. Taplete graph K_n is a nonbipartite graph for each	$h n \ge 3.$	(10 points
show that $n - k \le E(G) $ of a simple graph with 1	with n vertices and k components, $ \le {n-k+1 \choose 2}$. And then give an example 0 vertices and 2 components having: $E(G) $, and (ii) maximal number of $ E(G) $.		(10 points
Prove or disprove the (i) Both T_1 and T_2 have (ii) Give two non-isomor	the same number of vertices n . The same number of edges. The same number of edges. The same T_1 and T_2 both have 5 vertices. The same are the same T_1 , then T_1 and T_2 are the same T_1 .	ees.?	(10 points
(i) Both T_1 and T_2 have (ii) Give two non-isomor	e the same number of edges. The phic trees T_1 and T_2 both have 5 vertices.	ees.? Total	(8