الم تون الأج - الا جعاد , علواك ب

Mansoura university

2_nd term

المقرر: تحليل التباين (ر ٣٤٤)

Faculty of science

2012/2013

الزمن: ساعتان

Math. Depart 4th year (stat., computer sci.)
Final exam

التاريخ: ۲۰۱۳/٥/۲۸

Answer the following questions

Q1: (27 marks)

For the observations in the following table

treatments	observations					
A	7	6	8	5	9	7
В	8	9	10	7	8	6
C	7	8	10	5	6	3
D	8	6	5	4	9	4

- (a) Test the hypothesis that H_0 : $\mu_1 = \mu_2 = \mu_3 = \mu_4$ at level of significance $\alpha = 0.05$ where $f_{0.05}(3,20) = 3.10$
- (b) Use Bartlett's test to test the homogeneity of variances at level of significance $\alpha = 0.01$ where $b_4(0.01,6) = 0.5430$,

Q2: 27 marks)

(a) Construct one way analysis of variance table and test the hypothesis H_0 : $\mu_1 = \mu_2 = \mu_3 = \mu_4$, at level of significance $\alpha = 0.05$, for the following observations

Treatment		Observations				
A	7	10	9	8	10	10
В	5	6	4	8	7	6
С	8	9	10	6	3	6
D	5	6	4	3	7	5

Where $f_{0.05}(3,20) = 3.10$

- (b)If H_0 is rejected, use Scheffe's test to compare between four population means
- (c) Compare between the two groups of treatments (A, B, C) versus (D) using the contrast $w = \mu_1 + \mu_2 + \mu_3 3\mu_4$, where $f_{0.05}(1, 20) = 4.35$.

Q3: (26 marks)

Suppose that we are interested in the yields of 3 varieties A, B and C of wheat using 4 different fertilizers, planted in 12 randomly selected pieces of land with the same fertility assumption, production was, as in the following table. The yields for the 3 varieties of wheat measured in 100 kg

Wheat	Fertilizers				
	I	II	III	IV	
A	70	56	51	61	
В	66	60	55	60	
C	77	67	59	65	

- (a) Are there any differences between the impact of different types of fertilizers
- (b) Are there any differences between the productions of different types of wheat? [Use $\alpha = 0.05$ and $f_{0.05}(2,6) = 5.14$, $f_{0.05}(3,6) = 4.76$].

Answer the following questions

First: Objective questions:

(20 marks)

Among the following statements mark the true and false ones with $(\sqrt{\ })$ and (\times) respectively. Justify your answer for ONLY TWO of them:

(i) In a metric space, a set $A \neq \Phi$ is closed if and only if \overline{A} is closed
(ii) For any sequences $(\alpha_n), (\beta_n) \in \ell^2$ we have
$\sum_{n=1}^{\infty} \left \alpha_n \beta_n \right \le \left(\sum_{n=1}^{\infty} \left \alpha_n \right ^2 \right)^{\frac{1}{2}} \cdot \left(\sum_{n=1}^{\infty} \left \beta_n \right ^2 \right)^{\frac{1}{2}} \cdot \dots $
(iii) .The sequence ($(-1)^n$) belongs to the space ℓ^{∞}
(v) If $A = \{x_1, x_2, x_3, x_4, x_5, x_6\} \subseteq \ell^{\infty}$, it follows that the linear hull H(A) is separable()
(vi) For any normed spaces E,F over K, the space L(E,F) is a Banach space()
(vii) Any set $U \neq \Phi$ can be converted to a metric space
(viii) Any two linearly homeomorphic normed spaces are linearly isometric()
(ix) Every linear operator $T: R \to R$ is continuous on R
(x) The space ℓ^4 is linearly homeomorphic to the space K^4

Second: Subjective questions

(20 marks each) [1] a. Define : a metric space – the space ℓ^p . [4 marks] Show that, for p > 1, and for all (α_n) , $(\beta_n) \in \ell^p$, the sequence $(\alpha_n + \beta_n)$ belongs to ℓ^p , and $\left(\sum_{n=1}^{\infty} \left|\alpha_{n} + \beta_{n}\right|^{p}\right)^{\frac{1}{p}} \leq \left(\sum_{n=1}^{\infty} \left|\alpha_{n}\right|^{p}\right)^{\frac{1}{p}} + \left(\sum_{n=1}^{\infty} \left|\beta_{n}\right|^{p}\right)^{\frac{1}{p}}.$ [10 marks] b. Let X be a non-empty set. A mapping L: $X \times X \to R$ satisfies the following conditions: (i) L(x,y) = 0 if and only if x = y, and (ii) $L(x,z) \le L(y,x) + L(y,z) \quad \forall x,y,z \in X$. Prove that L is a metric on X. [6 marks] [2] a. Define: a separable space. [2 marks] Show that, for p > 1, the space ℓ^p is separable. [8 marks] b. Let E,F be normed spaces over K, E \neq {0}, and let T:E \rightarrow F be a linear mapping of E onto F. Prove that T is one-to-one and T^{-1} is bounded if and only if there is a constant m > 0 $\|Tx\| \ge m$ for all $x \in E$ with $\|x\| = 1$. [10 marks] such that [3] a. If T: $R^3 \to R^3$ is defined by $T(\alpha, \beta, \gamma) = (\alpha - \gamma, 2\alpha + \gamma, 3\beta)$; show that T is a bounded

linear operator on \mathbb{R}^3 , and then find $\|T\|$. [9 marks] b. Show that if E is a finite-dimensional normed space, then E is a Banach space, and every linear transformation $T : E \rightarrow G$ is bounded. (G; being any normed space) [11 marks]

El-Mansoura- Egypt	Fourth level of B.Sc.	المنصورة - مصر
Mansoura University Faculty of Science Mathematics Department Second Term		جامعة المنصورة كلية العلوم قسم الرياضيات me: 2 hours
Answer the following five	e questions:	Mark
- a- Find the number of ed	$ \operatorname{lges} E(G) $ of the graph G (10 points each	
of each of:		*
(ii) Regular graph G (iii) A complete rooted(iv) G is a tree with 2	uph with <i>n</i> vertices and maximal number of arcs. of order 1 with 2 <i>n</i> vertices. It 2-tree with 7 vertices, and vertices, and number of edges, 2 <i>n</i> vertices and having maximum number of edges, 2 <i>n</i> vertices and	l no triangles.
b - Give an example of eac	1	ch item 2 points
(iii) A graph with <i>n</i> ve	in 6 vertices. The provided HTML is a construction of the constr	
2 -a Prove that a graph G is	regular of order $2 \Leftrightarrow$ each component of G is a cycle	e. (8 points
b - Prove that In any graph	h the number of vertices of odd degrees is even.	(6 points
\mathbf{c} - Is there a complete roo	oted 2-tree with even number of vertices? why?	(6 points)
3. a- If G is a plane graph with	th k components, n vertices,	(10 points)
b- Show that the complete then prove that \mathbf{K}_n is	, prove that $n - m + r = 1 + k$. graph \mathbf{K}_5 is nonplanar and a nonplanar graph for each $n \ge 5$. complete graph \mathbf{K}_n is a nonbipartite graph for each $n \ge 1$.	(10 points)
4 – a. Let G be a simple graph show that $n - k \le E(G) $ of a simple graph with	bh with n vertices and k components, $ G \le {n-k+1 \choose 2}$. And then give an example 10 vertices and 2 components having: E(G) , and (ii) maximal number of $ E(G) $.	(10 points)
Prove or disprove (i) Both T_1 and T_2 have (ii) Give two non-isomore (iii) If e is an edge and v	we the same number of edges. Orphic trees T_1 and T_2 both have 5 vertices. It is a vertex in T_1 , then $T_1 - e$ and $T_1 - v$ are trees.?	(10 points)
Good luck	Tota	

11 00 1/19 - 1800 (sled | Start - 19/ - 19/ - 19/ - 133

Math 443

المستوى الرابع امتحان مادة: رسم بالحاسب الزمن: ساعتين

جامعة ً المنصورة كلية العلوم قسم احصاء وعلوم الحاس

4/6/2013

Please answer the following questions:

Q2: For each of the following fragments of code, write what the output would be.

(10 Marks)

num = 10
while num > 3:
 print num
 num = num -1

(a)

divisor = 2 for i in range(0, 10, 2): print i/divisor

(b)

num = 10
while True:
if num < 7:
break
print num
num -= 1

count = 0
for letter in 'Snow!':
 print 'Letter #', count, 'is', letter
 count += 1

(d)

Q3: For the following, write the line(s) of code that will emit the given Output.

(15 Marks)

- 1. >>> a_list = [3, 5, 6, 12] >>> YOUR CODE HERE 3
- 2. >>> a_list = [3, 5, 6, 12] >>> YOUR CODE HERE 12
- 3. >>> a_list = [3, 5, 6, 12] >>> YOUR CODE HERE [5, 6, 12]

Page 1 of 2

```
4. >>> a_list = [3, 5, 6, 12]

>>> YOUR CODE HERE

3

5

6

12

5. >>> a_list = [3, 5, 6, 12]

>>> YOUR CODE HERE

[12, 6, 5, 3]

6. >>> a_list = [3, 5, 6, 12]

>>> YOUR CODE HERE

[9, 15, 18, 36]

7. >>> a_list = [3, 5, 6, 12]

>>> YOUR CODE HERE

[False, False, True, True]
```

Q4: Explain the following codes and find the outputs:

(15 Marks)

```
def greet(friend, money):
  if friend and (money >= 20):
    print "Good Friend"
    money = money - 10
  elif friend:
    print "Friend"
  else:
    print "Not Friend"
    money = money + 10
  return money
money = 20
money = greet(True, money)
print "Money:", money
print ""
money = greet(False, money)
print "Money:", money
print ""
money = greet(True, money)
print "Money:", money
print ""
```

```
questions = ['name', 'age', 'favorite color', 'city']
answers = ['ahmed', '20', 'blue']
for q, a in zip(questions, answers):
   print 'What is your {0}? It is {1}.'.format(q, a)
```

```
for x in range(1,10):
print '{0:2d} {1:3d} {2:4d}'.format(x, 2*x, 3*x)
```

```
f = open('/workfile.txt', 'r+')
f.write('012345012345')
f.seek(5)
f.read(1)
f.seek(-3, 2)
f.read(1)
f.close()
```

Good luck.

Dr. Abdelhameed Fawzy (6/2013)

207 , ablesação - hipl, - elylose Ll

Mansoura University
Faculty of Science
Mathematics Department

Final exam Second term May 2013

4th level students (Mathematics / Statistics and computer Science programme)

Subject: Math 426 (Modelling and Simulations)

Subject: Math 426 (Modelling and Simulations)

Date: 08 /06/2013 Time allowed: Two hours

Answer the following questions:

Total marks: 80

Question one:

- A) Write down and find the equilibria for each of the following difference equation models: the Beverton-Holt model, the Ricker model, and the Nicholson-Bailey model.

 (10 marks)
- B) Construct a mathematical model to describe the competition between two species. Explain your model, find the steady states and discuss their stability.

(10 marks)

Question two:

- A) Write down a discrete-time model for measles with vaccination. (5 marks)
- B) Construct an SIS model for an infection spreading in a closed population with **varying** size. Explain your model, find the steady states and discuss their stability. (15 marks)

Question three:

- A) Write down both the von Bertalanffy and Gompertz models for the tumour growth.

 (5 marks)
- B) Prove that in a large **spherical** tumour there is a shell of proliferating cells, whose thickness depends on the excess nutrient concentration above a threshold $(c_2 c_1)$, how fast the nutrient is consumed k and how fast it diffuses D, but not on the size of the tumour itself.

 (15 marks)

Question four: (20 marks)

Construct an SIRS model for an infection spreading in a closed population with constant size and study the possibility to vaccinate the susceptible individuals with rate ψ . Find the critical age above which susceptible individuals should be vaccinated to protect the population from the infection.

Best regards, The examiner Dr. Muntaser Safan

(- hi/) 56 M5, mão-a 16/ de 160 8/ - 2 M105 1

Faculty of Science Computer Science Department 4th - Level

Date: May-June 2013 Subject: Algorithms Time Allowed: 2 Hours Total Marks: 80 Marks

Answer QUESTIONS [1,2]

Question 1:[12 Marks]

A- Use the Master method to solve the following recurrences

i. $T(3n)=T(2n/9)+\Theta(n^3)$

ii. $T(n)=7T(n/2)+\Theta(n^2)$

iii. $T(n)=1.5T(2n/3)+\Theta(2^{\lg(n)})$

B- Use the substitution method to verify that the running time for the recurrence relation $T(n)=9T(n/3)+n^2$ is of order $O(n^2lg(n))$.

Question 2:[12 Marks]

A- Write both the tilde approximations and the order of growth for the following:

I. $3N^2 - 150 \lg(N^3) - 12N$

II. $(7N^3 - 3/N)(2^{-N} - 12)$

III. $7^N + \lg(N)$

IV. $2 \lg N^2 + 4 \lg^2 N$

B- Write the Merge sort algorithm and find its running time; then illustrate the behaviour of Merge Sort on the following array of integers {234, 344, 29, 438, 429, 37, 345, 23}.

Answer ONLY TWO from QUESTIONS [3,4,5]

Question 3:[18 Marks]

A- Use the recursion tree method to get the solution of the following recurrence.

 $T(3n)=T(5n/2)+T(3n/2)+O(n^2)$

B- Use the recursion tree to find a good guess for the recurrence $T(n)=7T(n/2)+n^2$; then verify your guess using the substitution method.

C- Compute the running time complexity of the following algorithm

function Sum (array A, int n)

{

Sum=0

for (i=0; i<n; i++)

Sum=Sum+A[i]

return Sum
}

Question 4:[18 Marks]

A- Write the Insertion sort algorithm and find both its best and worst running times; then illustrate the behaviour of Insertion Sort on the following array of integers {2, 44, 49, 8, 9, 57, 5, 3}.

B- Compute the running time complexity of the following algorithms:

```
function LSUM (N)
{
  int sum=0;
  for (int i=1; i < N; i++)
    for (int j=N; j > 0; j=j/2)
       sum+=j;
  return Sum
```

C- Analyze the following algorithm to find an asymptotic upper bound of its execution $function \ multiply(x,y)$

Input: Positive integers x and y, in binary

Output: The product of x, y

 $n=\max(size \text{ of } x, size \text{ of } y)$

if(n=1) return x.y

 x_L = leftmost n/2 bytes of x, x_R =rightmost n/2 bytes of x

 y_L =leftmost n/2 bytes of y, y_R =rightmost n/2 bytes of y

 P_1 =multiply($x_L y_L$)

 P_2 =multiply($x_R y_R$)

 P_3 = $multiply(x_L+x_R, y_L+y_R)$

return $P_1.2^n + (P_3 - P_1 - P_2).2^{n/2} + P_2$.

Question 5:[18 Marks] Study the following graph algorithm, then answer the questions following it.

- A. Define the adjacency matrix for the graph.
- B. Write The Depth first Search Algorithm
- C. Perform Depth-First Search on the graph (starting from node A); whenever there's a choice of vertices, pick the one that is alphabetically first. Classify each edge as a tree edge, forward edge, back edge, or cross edge, and give the first visit and final visit order of each vertex., and state the complexity of its performance
- **D.** Draw the DFS search forest results from the DFS algorithm.
- E. Write an algorithm that identifies the strongly connected components within the graph.
- F. Write down the strongly connected components within the graph.

End of Questions

Chip! - Will can 61 West includes - algular

دور مايو 2013

الزمن: ساعتين

التاريخ : 2013/6/13

كلية العلوم - قسم الرياضيات برنامج: الرياضيات- الاحصاء وعلوم الحاسب الفرقة: الثالثة

المادة : دوال خاصة

كود المادة: 324

الدرجة الكلية:80 درجة

اجب عن الاسئلة الاتية

السؤال الاول: (20 درجة) احسب التكاملات الاتية

 $\int_{0}^{\infty} e^{-t^2} dt - (1)$

$$\int_{0}^{\infty} \frac{1}{1+v^4} dy - (-1)$$

$$\Gamma(2x) = \frac{2^{2x-1}\Gamma(x)\Gamma(x+\frac{1}{2})}{\sqrt{\pi}}$$
ن اثبت ان (ح)- اثبت ان

السؤال الثاني: (20 درجة)

$$_{2}F_{1}(\frac{1}{2},1,\frac{3}{2},z^{2}) = \frac{1}{2z}\log\frac{1+z}{1-z}$$
 اثبت ان -(۱)

(ب)- اوجد
$$P_3(x)$$
 حیث $P_1(x)=x$ و $P_1(x)=x$ و $P_2(x)=1$ هی کثیرة حدود لیجندر) (ب)

$$P_1(x) = x \quad P_0(x) = 1 \quad P_3(x) \quad P_$$

$$f(x) = \begin{cases} 1 & 0 \le x < 1 \\ 0 & -1 \le x < 0 \end{cases}$$
 او جد مفكوك الدالة

$$\sum_{m=0}^{\infty} A_m P_m(x)$$
 في الصورة

السؤال الثالث: (20 درجة)

$$J_{-n}(x) = (-1)^n J_n(x)$$
 فان عندما n عدد صحیح ان اثبت انهٔ عندما

$$\int J_1(\sqrt[3]{x})dx$$
 اوجد قیمة

$$4J_0''' + 3J_0'' + 3J_3 = 0$$
 اثبت ان -(ح)

(6 درجات)

السؤال الرابع:
$$(20)$$
 درجة) $L_2(x)$ النسؤال الرابع: $L_n(x)$ ومن ثم اوجد $L_2(x)$

$$L_n(x) = n! \, {}_1F_1(-n,1,x)$$
 اثبت ان .3

مع اطيب التمنيات بالتوفيق والنجاح د. عبد المنعم لاشين

عَوَى الرابِي م الاصار ملاح الاس المسي وسُنِي وسُنِي المنصورة - كلية العلوم

امتحان دور مایو ۲۰۱۳ م برنامج: احصاء و علوم الحاسب المستوى: الرابع

اسم المقرر: سلاسل زمنية و تنبؤ

كود المادة: ر ٣٥٥

التاريخ: ١٥ / ٦ / ٢٠١٣ م الدرجة الكلية: ٨٠ درجة الزمن: ساعتان

Answer the following questions:

[1] a- Consider the MA(q) process given by $X_t = Z_t + \theta_1 Z_{t-1} + \cdots + \theta_q Z_{t-q}$, where $\{Z_t\}\sim WN(0,\sigma^2)$. i) When q=1, and $|\theta_1|<1$, show that process can be

represented as $Z_t = \sum_{i=0}^{\infty} (-\theta_1)^j X_{t-j}$

(10 marks)

(10 marks)

ii) Show that $|\rho(1)| \le \cos\left(\frac{\pi}{q+2}\right)$ when q=1 and q=2

b-Consider the time series model $X_t = m_t + Y_t$, where m_t is a polynomial trend of degree three and Y_t denotes the random noise component.

Find a seven point filter $\{a_j\}_{j=-3,\dots,3}$

(10 marks)

[2] Consider the process $X_t - 0.4 X_{t-1} - 0.45 X_{t-2} = Z_t + Z_{t-1} + 0.25 Z_{t-2}$

i) Classify it as an ARMA (p,q) process

(4 marks)

ii) Determine whether it is causal and / or invertible

(6 marks)

iii) Find the coefficients ψ_j in its linear representation $X_t = \sum_{i=0}^{\infty} \psi_j Z_{t-j}$ (10 marks)

iv) Use the linear process representation to drive a formula for its autocorrelation function $\rho(h)$ and evaluate it for h=1(10 marks)

[3]a-Prove that the Process $X_t = X_{t-1} + Z_t$ where $\{Z_t\} \sim WN(0, \sigma^2)$, is not stationary process. (10 marks)

b-Define the following: i) The ARMA (p,q) process

ii) White noise process

iii) Weak stationary time series

iv) The operators ∇ and ∇_d

v) Non- negative definite function

(10 marks)

Best wishes Dr. Faten Shiha