لسور (الال - فتريا, صدة - فع ١٥٦ فيرا مو ٩٥٨

Mansoura University Faculty of Science Physics Department

3rd level Biophysics Students Full Mark: 80

Allowed time: 2 hours

Course title: Health Biophysics

Course code: Biophys 321

Second semester 2013-2014 Date: 21-5-2014

	NAME OF TAXABLE PARTY.			Date. Z.	1-3-2014	restreat
		An	swer the following questions) <i>:</i>	Mark	(S
1-	a-	Defin	ne the following:-		y .	12.5
		I.	Absorber half thickness	II.	Delta ray	
		III.	Rontgen	IV.	Exposure unit	
		V.	Resolving time			
	b-	pressi have	are of 100 mmHg if the open	rating v	positive ions in a GM counter with argon at a voltages is 1000 V and the cathode and anode ively? Knowing that the mobility of postive	7.5
2-	a-		short notes on structur vantages of ionization cham		proportional counter and show how the avoided by it.	12
	b-	Stror alum energ	ntium-90 knowing that, the inum is 2.7 g/cm ³ and Str	density ontium	of a shield of Plexiglas and aluminum for y of Plexiglas is 1.18 g/cm ³ , the density of -90 emits a beta particle whose maximum choice as a radiation shield Plexiglas or	8
3-	a-	Write	in details on the mechanism	of inc	lirect effect of radiation	12
	b-	Prove	e that 1 X unit equals 34 Gra	y (in ai	r)	8
4-	a-	0.1 Nabsor	MeV beta particle. Knowing bing atoms (I)=1.35x10 ⁻⁵ Z	g that:- Z is a gadro's	g power of graphite, density=2.25 g/cm ³ for a mean ionization and excitation potential of tomic number =6, speed of ionizing particle/s number=6.02x10 ²³ atom/mole and energy	
	b-	Write	short notes on Zero thresho	ld –dos	e response curve	8

Best wishes:

Dr Hany Kamal

المسترى الثالث - فعل موقد - فتيا- هوية لهي العص ع ١٣٠١

Mansoura University Faculty of Science Zoology Department Date: 4th June 2014 Time: 2 hr

Program: Z321 Biophysics

Subject: Nervous system Full Mark: 80 Marks

Answer All of the Following Questions

I.A. Choose the correct answer I	or (10) questions only:	[20 Marks]
1- Pia matter is the:		
1-first membrane 2-in		3- middle membrane
2-Cereprospinal fluid acts to keep		
1-intracranial pressure		3-fluid volume
3-Cranial nerves III & IV arise fro		
1-midbrain	2- thalamus	3-cerebrum
4-Food intake is controlled by:		
	2- hypothalamus	3-cerebrum
5-In human, spinal cord is divided		2 22
1- 31 segments 6-Spinal cord is responsible for:	2- 30 segments	3- 23 segments
1-immediate reflexes	2 motor rofleres	2 hugin nefferee
7-Cardiac centers are important fo		3- brain reflexes
1-blood pressure 2		3-respiration
8-Occipital lobes receives signals		3-1 cspn atton
1-auditory nerves		3-facial nerves
9-Deeper parts of cerebral hemispl		
1-myelinated fibers		3- glial cells
10-Initiation of voluntary moveme	ent is controlled by:	
1-optic lobe	2-sensory lobe	3-frontal lobe
11- Cerebral cortex is highly conv		
1-surface area of brain	2-nerve fibers	3- motor neurons
I.B. Compelete (5) only of the f	ollowing:	[10 Marks]
1-Cerebrum is divided into 2 h	emispheres connected by	to permit
2-In the spinal cord, the grey	matter consists of inter-ne	eurons,,
while white matter consists of		
3-Midbrain consists mainly of	which	is important for connecting
thalamic region with		1
4-Brain contains intercon	nected cavities called	
5-Spinal cord is the main pathway	connecting brain &	
6-Meninges consist of		

	*				
II.A. Put ($\sqrt{}$) or (\times)) or (X) on (5) only of the following statments & give the correct				
answer for the wrong or	nes:		[10Marks]		
1-Cervical region of spins	al cord consists of 8 se	gments, while lumber	region of		
5 segments ().					
2-Cerebellum is importa-	nt for initiating volunta	ry movement &for co	ntrolling posture &		
balance.					
3-Cerebrum is the lan	rgest portion of the	brain associated with	higher mental		
functions ().					
4-Vital centers of the med	dulla are cardiac, respira	tory & gastric centers (().		
5-Extracellular fluid circu cord ().	ulates in brain ventricles	& central canal o	f the spinal		
6-Cerebrospinal fluid (CS	SF) is secreted by brain	vessels ().			
T	,	/			
II.B. Answer the following	questions		[20 Marks]		
1) What conclusions can you	u draw from the following	observation? An axon wa	s stimulated with		
0.075 volts and there was no	o response. Later it was sti	mulated with 0.15 volts an	nd there was a		
response.					
2) Discuss the role of potass	sium ions during the action	potential using a labeled	diagram.		
III. Define all of the following	ng terms:		[20 Marks]		
a) All or Nothing' Law	b) excitable cell membrar	e c) Action potent	tial		
d) Afferent neuron	e) Nerve impulses	f) the absolute r	refractory period		
g) Depolarization	h) Saltatory conduction	i) Signal summa	ation		
j) Reflex arch					

Best Whishes

Prof. Dr. Azza El-Wakf Prof. Dr. Amr El-Missiry

Mansoura University Faculty of Science Physics Department

Second semester Date:8-6-2014 3rd level Biophysics students Full Mark: 80 Allowed time: 2 hours

Course title: Mathematical Physics for

non physicists

Course code: Phys 330

National Confession (Confession Confession C		Date:8-6-2014	
	Ans	wer the following questions: Mark	(S
1-	a-	Draw and write the branched function of:-	15
		$\int 2 \qquad 0 \le t < 3$	
	9	$f(t) = \begin{cases} 2 & 0 \le t < 3 \\ -4 & 3 \le t < 4 \\ 1 & 4 \le t \end{cases}$	
		$1 4 \le t$	
	b-	Find the Fourier series expansion of:-	15
		$f(t) = \begin{cases} 0 & -1 \le t < 0 \\ t & 0 \le t < 1 \end{cases}$	
		$\int (t) - \int t \qquad 0 \le t < 1$	
2-	a-	Find Laplace transform of the following functions:-	15
		$x^{-1/2} , x^{1/2}, \int_{0}^{x} f(x) dx, f(x) = \begin{cases} 0 & 0 \le x < \pi \\ -\sin x & \pi \le x < 2\pi \\ 0 & 2\pi \le x \end{cases}$	
	b-	Solve the integral equation:-	15
		$y(x) = x^3 + \int_0^x \sin(x-t)y(t)dt$	
3-	a-	Solve the initial value problems:-	20
		I. $y_{n+2}+4y_{n+1}+4y_n=0$ $y_0=0$, $y_1=1$	
		II. $y_{n+2}+2y_{n+1}+4y_n=0$ $y_0=1$, $y_1=0$	

Best Wishes Prof Attalla Elhanbaly

ال عن الناك منظمون كميا الربية له ١١١

Mansoura University
Faculty of Science
Chemistry Department

Code: Chem.341

Subject: Electrochemistry

Third Level - Second Term Program : Biophysics ;

Chem./Botany; Chem./Zoology

Date: June 2014

Time Allowed: 2 hours Full Mark: 60 Marks

Answer All Questions

الأسئلة على الوجهين

First Question:

(20 Mark)

- [A] Write on Nernst theory of the origin of electrode potential and Nernst equation relating electrode potential and concentration. (8 Mark)
- [B] Taking E^o Zn²⁺/Zn = -0.76 V and E^o Mg²⁺/Mg= -2.37 V, construct a cell of both electrodes.

Write electrode and cell reactions and calculate : E° cell , ΔG° and equilibrium constant K . (6 Mark)

[C] Write on cadmium-Weston standard cell. (6 Mark)

Second Question:

(20 Mark)

- [A] Discuss in detail activation overpotential for polarized electrode and the Tafel equation. Illustrate how, using this equation, the exchange current i₀ can be calculated. (8 Mark)
- [B] If the Tafel constants, a and b, have the values 1.54 v and 0.119 v respectively for the reduction of hydrogen ions at a lead cathode, calculate the values of transfer coefficient α and the exchange current density i_0 .

(6 Mark)

[C] Write on cathodic evolution of hydrogen.

(6Mark)

Third Question:

(20 Mark)

[A] The following values of emf of the cell: Ag/ AgBr/ KBr (a=1) / Hg₂Br₂/Hg at various temperatures are given as follows:

t°C

20

25

30

E (V)

0.06630

0.06834

0.07048

Write the electrode reactions, cell reaction and calculate the enthalpy change of the cell reaction ΔH , free energy change ΔG , entropy change ΔS and equilibrium constant K at $25^{\circ}C$.

(8 Mark)

[B] Complete: (6 Mark)
(1) Sb/Sb ₂ O ₃ /OH ⁻ is called and can be used for measuring
(2) In chemical cell emf is due to, while in concentration cell it is due to
(3) Concentration overpotential is due to
(4) The potential of gas electrode depends on and
(5) Ohmic overpotential is due to
(6) The transport number of the anion or cation is
[C] Tick ($\sqrt{\ }$) for the correct answer: (6 Mark)
(1) Overpotential η is given by :
(i) $\eta = E_{irreversible} + E_{reversible}$ () (ii) $\eta = E_{irreversible} - E_{reversible}$ () (iii) $\eta = E_{reversible} - E_{irreversible}$ ()
(2) For an electrode at equilibrium :
(i) Rate of oxidation $=$ rate of reduction () (ii) Rate of oxidation $>$ rate of reduction (
(iii) Rate of oxidation < rate of reduction ()
(3) For non spontaneous cell reaction :
(i) E has a +ve value while ΔG has a -ve value ()
(ii) E has a -ve value while ΔG has a +ve value ()
(iii) Both E and ΔG have zero value ()
(4) Theoretically, liquid junction potential (E_j) equal zero when:
(i) $t_{+} = t_{-}$ () (ii) $t_{+} > t_{-}$ () (iii) $t_{+} < t_{-}$ () (iv) $t_{+} + t_{-} = 0$ ()
(5) The cell: Pt, $H_{2(g)}$ (P_1 atm.) HCl (a) (P_2 atm.) $H_{2(g)}$, Pt
is an example of:
(i) Electrolyte concentration cell without transference ()
(ii) Electrolyte concentration cell with transference ()
(iii) Chemical cell without transference ()
(iv) Electrode concentration cell without transference ()
(6) Irreversible processes are characterized with:
(i) Very high i_0 () (ii) Very low i_0 ()

الم من ما ما من الموسى عبيا المفلات النوويات (ف ١٢٥)

Mansoura University	Year: 3th Level	Second Semester , 2013-2014
Faculty of Science	Specialization:	June ,2014
Physics Department	Biophysics Program	Time: 2 Hours

Course Title: Physics of Reactors and Neutrons

Course Code: Phys312 / Program: Biophysics

Sunday 15/6/2014

9 - 11 AM

Total Full Mark: 80 Marks

Answer the following questions

Marks

1a	Write on the different types of slow neutron reactions with short notes about each one.	10
1b	Define the following: 1. Epithermal neutrons 2. Flux density 3. Macroscopic cross section 4. Mean free path 5. Breeding reactions	15
1c	Calculate η for natural uranium. (y= 2.47)	5
2a	The absorption cross section of Cd ¹¹³ for certain neutrons is 20800 barns. Taking the density of this material to be 8.67 grams/cm ³ . Calculate: 1.The volume density of this material 2. The macroscopic absorption cross section. 3. The thickness of Cd ¹¹³ required to reduce the intensity of the neutron beam to 1 % of its original value.	15
2b	Plot and discuss thermal neutron fission yield of U ²³³ and Pu ²³⁹ .	10
3a	Calculate the energy released when 1 kg of U^{235} fissions, taking the disintegration energy per event to be Q = 208 MeV.	10
3b	Write on nuclear fission and liquid drop model. Calculate E_f and E_b and derive the condition for stability.	15

With our Best wishes

Examiners: Prof. Dr. Ali H. El-Farrash Dr. Ahmed Abu El-Ela*

^{*}Corresponding Examiner

المال ناجول بالمال الهجيم - طرم لعفل الهرمان المرمان المرمان الهرمان الهرمان الهرمان الهرمان الهرمان الهرمان الهرمان المرمان الهرمان المرمان ا

Mansoura University

Faculty of Science

Chemistry Department

Subject Code: Chem. 316

Subject: Analytical chemistry

Second Term Examination

3rd Level Students Program: Biophysics

Date: 1/6/2014

Time Allowed: 2 hours

Full Mark: 80 Marks

Answer the following questions:

Section (A) Electroanalytical chemistry (40 marks)

- Q1. A. Write an account about the coulometric titration for the determination of AsO₃³⁻ ion in insecticide, with drawing the electrolysis cell, mechanism of reaction and the calculation of the percentage As₂O₃ in insecticide sample. (At. Wt.: As=79.4) (10 marks)
 - **B.** Calculate the solubility product constant (K_{AgI}) , the solubility (X) in molar and in ppm for the sparingly soluble AgI salt present in the cathode chamber of the following cell:

(+)Pt/H_{2(g)}(0.575 atm)/H⁺_(aq)(0.01M) // KI_(aq)(0.02M)/AgI_(s)/Ag^o(-)

(Knowing that: $E_{Cell}=0.1135$ volt, $E_{Ag+/Ago}^{\circ}=0.8$ volt and $E_{2H+/H2}^{\circ}=0.0$ volt) (At.Wt.: Ag=108, I=127) (10 marks)

- Q2. A. Write the equation for the liquid junction potential (Ej, volt) with reference to the different parameters in the equation, the electrochemical cell in which an ion selective membrane for the determination of pH and pF is incorporated and the standard calibration curves used for the determination of H⁺ and F⁻ ions in unknown water samples. (10 marks)
 - B. The organic phenol is easily brominated by the following equation:

$C_6H_5OH+3Br_2\rightarrow C_6H_2Br_3OH+3HBr$

This equation forms the basis for a coulometric titration with the electrogenerated bromine. A 150 ml sample of polluted H_2O by phenol is acidified and 5 g of KBr is added. The coulometric titration requires 7.054 min at 0.0375 A to reach the end point. Calculate the phenol content in the sample as ppm (μ g/ml). Show whether the water sample is polluted by phenol or not (polluted water contains more than 0.15 μ g/ml phenol). (At.Wt.: C=12, O=16 and H=1.008) (10 marks)

Section (B) Chromatography (40 marks)

- Q3. 1. Write on each of the following: (15 marks)
 - a. Applications of ion-exchange chromatography.
 - b. Advantages of gel chromatography.
 - c. Differences between GC and HPLC.
 - 2. For a column of height equal 10 cm and cross sectional area equal 2 cm². If the void volume equal 50 % of column volume, find V_{max} knowing that $K_P=30$. (5 marks)
- Q4. 1. Explain each of the following: (12 marks)
 - a. General procedures for paper chromatography (PC).
 - b. Identifying spots in planner chromatography.
 - 2. If 100 ml of a pollutant with concentration of 1×10⁻⁷M was extracted with 100 ml of organic solvent and the remaining concentration was 2×10⁻⁸M. What is the number of extractions should be performed to get 99.2% extraction. (8 marks)

Good Luck: Prof. Medhat Hafez and Dr. Hany Moustafa

(m get) aliel Jappe o o policie - wings LI

Mansoura University Faculty of Science Chemistry Department

Subject: Biochem. 378 Course(s): Clinical Biochemistry

Second Term Final Exam Third Level (Biophysics) Date: 1st June 2014 Time Allowed: Two hours

Full Mark: 80 Marks

Answer ALL the Following Questions

- [1] A- Explain the factors to be considered in each of the following cases:
 - i- At the time of collecting the blood specimen.

[10] Marks

- ii- Establishing reference values and interpreting results of analyses carried out on specimens collected form individual patients. [14] Marks
- B- Classify briefly the main uses of the data contained in clinical chemistry reports.

[5] Marks

- [2] A- Discuss the reasons that make the detection of gastrointestinal blood loss in faeces not simple, as it [5] Marks depends on the pseudoperoxidase activity of haem.
 - B- Enumerate the causes of water depletion. Give examples for each cause.

[7]Marks

C- Differentiate between hyperkalaemia and hypokalaemia.

[10] Marks

- [3] A-Mention the factors known to cause a shift of HbO2 dissociation curve to the right [4] Marks (increased P_{50}).
 - B- What are the tests that may be helpful in reaching a diagnosis for patients with renal stones?
 - C- A 70-year-old man was admitted to hospital as an emergency. He gave a history of dyspepsia and epigastric pain extending over many years. He had never sought medical attention for this. One week prior to admission, he had started to vomit, and since vomited frequently, being unable to keep down any food. He was clinically dehydrated, and had marked epigastric tenderness, but no sign of abdominal rigidity. Analysis of an arterial blood specimen gave the following results:

	Plasma analyses (mmol/L)	Reference range (mmol/L)
[Urea]	17.3	2.5-6.6
[Na ⁺]	117	132-144
[K ⁺]	2.2	3.3-4.7
[Creatinine]	250	55-120

	Blood gas analyses	Reference range
$[H^{+}]$ (nmol/L)	26	36-44
$P_{\text{CO}_2}(\text{kPa})$	6.2	4.4-6.1
[Bicarbonate] (mmol/L)	44	21.0-27.5
$Po_2(kPa)$	9.5	12-15

How would you describe this patient's acid-base status? What might have caused the various abnormalities revealed by these results? Why is the plasma [K+] so low?

[15] Marks

Examiner: Dr. Ahmed EL-Sokkary

-Good Luck-