(mrad) aige hos aspilas - woo hos

Mansoura University Faculty of Science Chemistry Dept. 3rd Year Gen. Chem.

2d Semester 2014 Chem. 364 346 Full Mark [80] Time Allowed 2hr

Final Examination

Answer	the	Following	Questions:
---------------	-----	------------------	-------------------

1. Write the correct answers of each of the followings:

[15]

- (A) The rate law for this reaction is k[A][B]². Doubling the concentration of A increases the rate of the reaction by a factor of (a) 9 (b) 4 (c) 1(d) 2
- (B) The units of k for the third order reaction is (a) s^{-1} (b) s^{-3} (c) L mol⁻¹ s^{-1} ; (d) L² mol⁻² s^{-1} ; (e) L² s^2 mol⁻²
- (C) The rate of a chemical reaction
 - a) does not vary with temperature
 - b) depends on the slow step of the mechanism
 - c) depends on concentration of products
 - d) has an order which is related to the coefficients of the balanced equation
- 2. Answer the followings:

[25]

- (A) Explain the influence of reaction temperature on each of:
- (a) Rate constant (b) Half-life time (c) Activation energy

 - (d)Reaction order (e) Molecularity of reaction
- (B) For the following reaction mechanism:

$$NO + O_3 \rightarrow NO_2 + O$$

(step 1)

$$O_3 \rightarrow O_2 + O$$

(step 2)

$$NO_2 + O \rightarrow NO + O_2$$

(step 3)

Give the (a) The overall reaction equation; (b) the expression for V_R:

- (c) The intermediate(s); (d) the rate If step 2 is the slowest.
- (C) How the concentration-time data plotted in order to obtain a straight line for first, second ,thirdand zero order?
 - (D) Sketch the consequences of absorption of light in a system اقلب الصفحة من فضلك

(E) Define the kinetic salt effect and prove that

$$\log \frac{k_2}{k_2^0} = 2AZ_A Z_B I^{1/2}$$

3. Solve the following problems:

[40]

(A) For the reaction, **2HI** $\rightarrow H_{\frac{2}{1}}^{+1}$, $k = 1.20 \times 10^{-3}$ M s at 700 K.

A sample of 0.0172 mol L HI is maintained at 700 K. How long will it take to decompose 40% of the original HI?

- (B) A certain system absorbs 3.0 x 10¹⁶ quanta of light per second. On irradiation for 10 minutes 0.002 mole of the reactant was found to have reacted. Calculate the quantum efficiency and comment.
- (C) The rate constant for the decomposition of CH₃CHO is 0.0105 dm³ mol⁻¹ s⁻¹ at 700 K. If the activation energy for this reaction is 188 kJ, find the rate constant at 800 K.
- (D) The following initial rate data was collected for the reaction;

 $\alpha A + \beta B \rightarrow vC + \delta D$

		1	
Experiment	[A](M)	[B](M)	Rate M/s
1	0.422	1.52×10^{-2}	2.71 x10 ⁻⁵
2	0.638	1.21 x 10 ⁻²	$4,93 \times 10^{-5}$
3	0.921	1.52×10^{-2}	1.29 x 10 ⁻⁵

Calculate the order and rate constant of the reaction.

N.B. $N_A=6.02 \times 10^{23} \text{ mol}^{-1}$, $h = 6.626 \times 10^{-34} \text{ Js}$, $C = 3 \times 10^8 \text{ ms}^{-1}$

GOOD LUCK

Prof. Shawky Hassan, Prof. Hamed Abo El Nadar and Prof Salem Samra

Mansoura University Faculty of Science Zoology Department

May 2014 Third year

Subject: Aquatic fauna Date: 8 June 2014 Time Allowed: 2hr

Answer the following questions

Question One:

(20 Marks)

Answer **Two** only:

- 1- Mention the general characters of Cnidaria and describe the life cycle of one species of the phylum.
- 2- Compare between male and female rotifer.
- 3- Explain the reproduction of marine sponge.

Question Two:

(20 Marks)

- A- Answer **Two** only:
 - 1- Compare between Daphnia, Artemia and Apus.
 - 2- Compare between the three classes of Annelida.
 - 3- Define cyclomrphosis.
- B- Give a report on:
 - Scaphopoda Development in Crustacea and Mollusca

Question Three:

(20 Marks)

With labeled drawings what you know about each of the following:

- Parasitic cirripedes Eumalacostracan amphipods Foot in Mollusca
- Mantle and pearl formation in pelecypods

With best wishes

Prof. Dr. Mohamed Fathy Abdel-Aal Mansour Dr. Sherif Ramadan

1721 d and led chiles allowed

Mansoura University
Faculty of Science
Chemistry Department
Code: Chem.341

Subject: Electrochemistry

Third Level - Second Term Program: Biophysics;

Chem./Botany; Chem./Zoology

Date: June 2014

Time Allowed: 2 hours Full Mark: 60 Marks

Answer All Questions

الأسئلة على الوجهين

First Question:

(20 Mark)

- [A] Write on Nernst theory of the origin of electrode potential and Nernst equation relating electrode potential and concentration. (8 Mark)
- [B] Taking E^{o} Zn²⁺/Zn = -0.76 V and E^{o} Mg²⁺/Mg= -2.37 V, construct a cell of both electrodes.

Write electrode and cell reactions and calculate: E° cell, ΔG° and equilibrium constant K. (6 Mark)

[C] Write on cadmium-Weston standard cell. (6 Mark)

Second Question: (20 Mark)

- [A] Discuss in detail activation overpotential for polarized electrode and the Tafel equation. Illustrate how, using this equation, the exchange current io can be calculated. (8 Mark)
- [B] If the Tafel constants, a and b, have the values 1.54 v and 0.119 v respectively for the reduction of hydrogen ions at a lead cathode, calculate the values of transfer coefficient α and the exchange current density i_0 .

(6 Mark)

[C] Write on cathodic evolution of hydrogen.

(6Mark)

Third Question: (20 Mark)

[A] The following values of emf of the cell: Ag/ AgBr/ KBr (a=1) / Hg₂Br₂/Hg at various temperatures are given as follows:

t°C

20

25

30

E (V)

0.06630

0.06834

0.07048

Write the electrode reactions, cell reaction and calculate the enthalpy change of the cell reaction ΔH , free energy change ΔG , entropy change ΔS and equilibrium constant K at $25^{\circ}C$.

(8 Mark)

[B] Complete: (6 Mark)
(1) Sb/Sb ₂ O ₃ /OH is called and can be used for measuring
(2) In chemical cell emf is due to, while in concentration cell it is due to
(3) Concentration overpotential is due to
(4) The potential of gas electrode depends on
(5) Ohmic overpotential is due to
(6) The transport number of the anion or cation is
[C] Tick ($\sqrt{)}$ for the correct answer: (6 Mark)
(1) Overpotential η is given by :
(i) $\eta = E_{irreversible} + E_{reversible}$ () (ii) $\eta = E_{irreversible} - E_{reversible}$ () (iii) $\eta = E_{reversible} - E_{irreversible}$ ()
(2) For an electrode at equilibrium :
(i) Rate of oxidation = rate of reduction () (ii) Rate of oxidation > rate of reduction (
(iii) Rate of oxidation < rate of reduction ()
(3) For non spontaneous cell reaction :
(i) E has a +ve value while ΔG has a –ve value ()
(ii) E has a -ve value while ΔG has a +ve value ()
(iii) Both E and ΔG have zero value ()
(4) Theoretically , liquid junction potential (E _j) equal zero when:
(i) $t_{+} = t_{-}$ () (ii) $t_{+} > t_{-}$ () (iii) $t_{+} < t_{-}$ () (iv) $t_{+} + t_{-} = 0$ ()
(5) The cell : Pt, $H_{2(g)}$ (P_1 atm) HCl (a) (P_2 atm) $H_{2(g)}$, Pt
is an example of:
(i) Electrolyte concentration cell without transference ()
(ii) Electrolyte concentration cell with transference ()
(iii) Chemical cell without transference ()
(iv) Electrode concentration cell without transference ()
(6) Irreversible processes are characterized with:
(i) Very high i_0 () (ii) Very low i_0 ()

appelin. Moel - nopplate in has

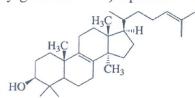
Mansoura University Faculty of Science Dept. of Chemistry Second Semester Exam (2013/14)

Natural Products' Chemistry Time allowed: 2 hours Full Mark: 60 Marks

ANSWER THE FOLLOWING QUESTIONS

I.	In your answer notebook write the letter representing the right statement for only 15 of the
	following (30 marks,2 for each).

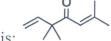
- 1- The best classification method for studying natural products is:
 - a) that based on taxonomy
- b) that based on carbon skeleton
- c) that based on biogenesis
- d) that based on physiological activities
- 2- Classification of steroids as a class of natural products is based on:
 - a) biogenesis
- b) carbon skeleton
- c) physiological activity
- d) none of them


- 3- Aromatic compounds can be produced from:
 - a) Shikimic acid pathway
- b) Mevalonic acid pathway
- c) Polyketide pathway
- d) All of them
- 4- Natural products are:
 - a) Primary metabolites
- b) Secondary metabolites
- c) Both of them
- d) None of them

- 5- Mevalonic acid pathway produces:
 - a) carotenoids
- b) steroids
- c) terpenoids
- d) all of them

- 6- Shikimic acid pathway
 - a) starts with phosphoenolpyrovate and erythrose 4-phosphate
 - b) produces shikimic acid as a final product
 - c) produces terpenoids as final products
 - d) produces fatty acids as final products
- 7- Mevalonic acid pathway produces
 - a) coumarins b) monoterpenes
- c) acetogenins
- d) polyketides

- **8-** Squalene is the precursor of:
 - a) monoterpenes b) diterpenes
- c) triterpenes
- d) tetraterpenes


- **9-** The precursor of sesquiterpenes is:
 - a) geraniol
- b) farnesol
- c) geranylgeraniol
- d) squalene

10- Steroids are formed from lanosterol by losing of:

- a) 2 CH₃ at C4 and CH₃ at C14
- b) the side chain at C17
- c) angular methyl groups
- d) 3-hydroxyl group

- 11-Lanosterol is:
 - a) a sterol
- b) a sex hormone
- c) a triterpene
- d) a sapogenin

12- Artemisia ketone is:

- a) a regular monoterpenoid b) an irregular monoterpenoid
- c) a sesquiterpenoid

d) none of them

13- From essential oil production methods are:

- a) expression
- b) steam distillation c) adsorption on fats d) all of them
- 14- A monoterpene gives by ozonolysis acetone, 2 moles of formaldehyde and

OHC-CH₂CH₂-CO-CHO, it may be:

- a) 1 b) 2
- c) 3
- d) any of them
- 15- An aldehyde having molecular formula C₁₀H₂₀O should be:
 - a) acyclic
- b) monocyclic
- c) bicyclic
- d) tricyclic

16- α -Terpineol reacts with bromine to give:

- a) a deep blue nitrosyl compound.
- b) a yellow oxime
- c) a dibromo compound
- d) none of them

17- Distillation of α -terpineol with selenium gives:

- a) benzene
- b) toluene
- c) p-cymene
- d) Diel's hydrocarbon

18-Distillation of cholesterol with selenium gives:

- b) benzene
- b) toluene
- c) p-cymene
- d) Diel's hydrocarbon

II. Illustrate by chemical equations only three of the following conversions (15 marks,5 for each):

- 1- nerol (I) into α -terpineol (p-menth-1-en-8-ol).
- **2-** p-toluic acid (II) into α -terpineol.
- 3-2(1-naphthyl)ethyl magnesium bromide into Diel's hydrocarbon (III).
- 4- Ergosterol (IV) to vitamin D2 (V).

III. Illustrate by chemical equations the following biogenetic conversion (15 marks,5 for each):

- i. acetyl co-enzyme A into isopentenyl pyrophosphate (VI).
- ii. the germacrane (VII) into the seco-guaiane (xanthane) (VIII).
- iii. shikimic acid (IX) into phenylalanine (X).

Best Wishes: Prof. Mamdouh Abdel-Mogib, Prof. Moged Berghot, Dr. Mona Elsayed & Dr. Saad Shaaban

۲