Mansoura University
Faculty of Science
Chemistry Department
Subject: Biochem. 271

Second Term Exam. 2014/2015 Second Year Biophysics Full Mark: 80 Marks

Date: 17 /5/ 2015 Time Allowed: 2 hour

Course: Chemistry of carbohydrates

Answer all the following Questions

Provide your answer with formula, equations and figures wherever possible Question I: (30 Marks)

A- Complete the following equations with the expected product (s): (15 Marks)

2) Inositol 6 H₃PO₄

4) D-Fructose Conc.HNO₃ OR

B- Draw the chemical structure of the following: (12 Marks)

- 1- β-N-acetyl-Galactosamine.
- 2- β-L-Iduronic acid.
- 3- Chondroitin sulfate A.
- 4- Chondroitin sulfate B.
- 5- L-Rhamanose.
- 6- Sialic acid.

- C- Put $(\sqrt{\ })$ for right sentence and (X) for false sentence: (3 Marks)
- 1- Glycoproteins are considered as non-nitrogenous heteropolysaccharides.
- 2- The treatment of a monosaccharide solution with HI and heating, it converts to n-hexane.
- 3- Both ribose and arabinose give erythrose on Ruff-degradation.

Question II:

(34 Marks)

A- Give the name and draw the structure (if possible) of each of the following:

1 Cyclic sugar clockel present in muscles	D.,,,,,0
1- Cyclic sugar alcohol present in muscles.	Draw?
2- C2 epimer & C4 epimer of glucose.	Draw?
3- Compound used for determination of glomerular filteration	
rate.	
4- Deoxy sugar obtained from L-galactose.	Draw?
5- Invert sugar.	Draw?
6- A trisaccharide formed of one unit of each of glucose,	
galactose and fructose.	
7-2 isomers differ in position of OH at the anomeric C atom.	
8- Enzyme having a physiological role in fertilization.	
9- Reducing disaccharide containing β-glucose.	
10- Homoglycans used as plasma volume expander to restore	2
blood pressure in cases of shock.	
11- Laxative, non-fermentable disaccharide.	Draw?
12- Polysaccharide used as Laxative.	
13- The change in he degree of the angle of rotation of optically	
active compound.	
14- Glycosaminoglycans containing L-Iduronic acid, found in	
skin, cornea, heart, and valve.	
15- Disaccharide linked by α-1, 1-glucosidic linkage.	
16- Very small protein core attached to very long unbranched	
carbohydrate chains (more than 50 monosaccharide), and	
constitute 5% of cellular membrane.	H
17- Sulfer-free nitrogenous heteropolysaccharide.	Draw?

Ouestion III:

(16 Marks)

Give a brief account on FOUR of the following:

- 1- Kiliani-Fischer synthesis of glucose (discuss by equations).
- 2- Mechanism of fructosazone formation (discuss by equations).
- 3- Lactose intolerance and the effects of presence of lactose in intestine.
- 4- Mechanism of absorption of carbohydrates by active transport and the types of the most important glucose transporters.
- 5- Differences between Amylose and Amylopectin. (make a comparisom)

The questions are finished With my best wishes

دور مایو: ۲۰۱۰

تاريخ الامتمان: ٢٠١٥-٥١٠٢

كلية العلوم - قسم الرياضيات

المادة: معادلات تفاضليه.

المستوى الثاني: الفيزياء و الفيزياء الحيوية

أستاذ المادة: إلد على شمندي

أجب عن ثلاثه اسئلة فقط ممايلي: (ممنوع استخدام القلم الرصاص)

أوجد حل المعادلات التفاضلية التالية:

i)
$$\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 5y = xe^{2x} + cos x + 21$$

ii)
$$1 + \frac{dy}{dx} = e^{\ln(\tan(x + y))}$$

السوال الثاني:

اوجد حل المعادلات التفاضلية التالية :

i)
$$(x y^2 + x) dx + (x^2 y^2 + x^2 + y^2 + 1) dy = 0$$

ii)
$$(x^2 + y^2 \sqrt{1 + \frac{y^2}{x^2}}) dx - xy \sqrt{1 + \frac{y^2}{x^2}} dy = 0$$

اوجد قيمه كل من (a

i)
$$L^{-1} \left\{ \frac{1}{(s^2 - 16s + 65)^2} \right\}$$

ii)
$$L\left\{\frac{1+\cos t}{t}\right\}$$
 , $iii)$ $L\left\{te^{-t}\sin 2t\right\}$

$$iii) L\left\{te^{-t}\sin 2t\right\}$$

b) اوجد حل المعادلة التفاضلية

$$\sin 2y \frac{dy}{dx} - \frac{9\sin 2x}{1 + \cos 2x} \sin^2 y = 1 \quad , \quad x:0 \to \frac{\pi}{2}$$

$$(\frac{\mathrm{d}y}{\mathrm{d}x}+1)\ln(\frac{y+x}{x+3})=\frac{y+x}{x+3}$$
 : اوجد حل المعادلة التفاضلية : (a) اوجد عل المعادلة التفاضلية :

اوجد مجموعه المسارات المتعامدة مع ألمجموعه:

$$y^2 = c e^x + x + 1$$

Mansoura University Faculty of Science Physics Department بسم الله الرحمن الرحيم Final Exam in Physics (May. 2015) Second Level Biophysics students

Time Allowed :2 hours Subject : PHYSICS (Thermodynamics) 80 Marks

Answer the following questions

- 1-a) State Carnot principles
- b) If P is a function of T and V find dP in terms of the coefficient of volume expansion and isothermal compressibility
- c) Carnot engine operates as refrigerator between two temperatures 250°k and 300 k receives 500 calories of heat from the cold reservoir
- 1- How many calories does it reject to the hot reservoir
- 2- How much work is done by the engine in this case

[25 Marks]

- 2-a) Deduce the second TdS equation where S = f(T,P) and then prove that the Joule Kelvin coefficient $\mu_j = [T(\frac{\partial v}{\partial T})p V]$
 - b- find μ_j for 1)- an ideal gas 2)- a gas obeying the Van der Wall equation of state [25 Marks]
- 3- An ideal gas C_p =29.6 Joile\gm mole K , temperature 277K and pressure 5X10⁶n/m ² expands adiabatically to pressure 1X10⁶ n/m ², the gas then heated at a constant volume to temperature 227K and finally the gas compressed isothermally back to its initial condition (R= 8.3 Joule/gm mole K) . Draw the cycle on (P-V) and on (T-S) diagram and calculate 1) the work done during the cycle 2) the change in entropy in case of the change at constant volume and during the isothermal process
- 3) the change in internal energy during adiabatic process
- 4) the change in enthalpy during the change at constant volume.

[30 Marks]

Best wishes Dr Anwar Megahed

Mansoura University Faculty of Science Physics Department 2nd Level Exam. May 2015 Time allowed: 2 hrs

Atomic Physics Phys 222

Answer the following questions.

- 1-a) The application of elliptical orbits to one electron model leads to degenerate orbits. Discuss. (15 marks)
 - b) Paschen series contains several spectral lines. Deduce the wavelength in A° and the energy in eV of the spectral line of minimum wavelength of the Paschen series.

 (15 marks)
- 2-a) Using the vector atom model, discuss L-S coupling and j-j coupling. The orbital angular momentum vector of an atom L=2 and the spin angular momentum vector of the atom S=3/2. Calculate the total angular momentum vector of the atom J. (15 marks)
 - b) For a monovalent element, <u>deduce</u> the possible j values for $\ell = 0,1,2,3$ and the type of each term. <u>Draw</u> the energy level diagram of Na atom and <u>explain</u> the spectral series of this atom. <u>Comment</u> on the two D lines (D₁ & D₂) of sodium atom. (15 marks)
- 3-a) Draw and explain the splitting of the "first & second" spectral lines of the Balmer series using the elliptical orbits. (10 marks)
 - b) Draw and explain the energy level diagram of boron ion (B⁴⁺). "H like ion" The atomic number of boron Z=5. (10 marks)

Best Regards

Prof. A. El-Khodary

Mansoura University Faculty of Science Physics Department Subject: Physics

Second Term

Second Year :Bio-Phys.& Physics

Date: June 2015 Time allowed: 2 hours

Course (s):

Fluid Mechanics phys. 227

Full Mark:: 80 Marks

Answer THE FOLLOWING Questions:

Each Question (20) Marks

- [1] a- Determine the amount of power per unit are for a wind moving through a cylindrical column of cross-sectional area A with speed v . [8] Marks
 - b- Steel ball of radius 0.001 m falls freely in certain fluid having density of 1420 Kg/m³ and viscosity coefficient of **0.83 Kg/m.s**. i) What is the velocity when the acceleration becomes half of the free fall acceleration? ii) Find the velocity under steady state condition. steel density = $7.8 \times 10^3 \text{ Kg/m}^3$ [12] Marks
- [2] a- Define the following terms: i Plastic flow. ii Dilettante flow. iii- Coefficient of viscosity. iv- Irrotational flow. v- Viscosity. vi- Laminar flow. vii- incompressible fluid
 - **b-** A Venturi tube may be used as a fluid flow meter. If the difference in pressure is $P_1 P_2$ =18x10³ Pa, find the fluid flow rate, given that the radius of the outlet tube is 2 cm, the radius of the inlet tube is 4 cm, and the fluid is gasoline. ($\rho = 700 \text{ kg/m}^3$). [6] Marks
- [3] a- Write briefly on:
 - i- Why does dust adhere (stick) to a fast rotating fan.
 - ii- Reynolds number and turbulent flow.
 - iii- Newtonian and non-Newtonian fluids. [6] Marks
 - **b-** For a rectangular container of area **A** and height **h**.
 - i) Find the amount of flow under varying head during input and output discharge.
 - ii) Find the time interval (t_2-t_1) when the inlet discharge Qo is zero. [7] Marks
 - c- In the figure shown, two pipes containing the same fluid of density $\rho_1 = 990 \text{ Kg/m}^3$ are connected using a **U**- tube manometer. What is the pressure difference between the tow tubes (P_A - P_B) if the manometers contains fluid of density $\rho_2 = 13.6 \times 10^3 \text{ Kg/m}^3$

- [4] A vertical tank 2 m diameter has at the bottom a 0.05 m diameter sharp edged orifice (hole) .
 - a- If water enters the tank at constant rate of 0.012 m³/s. Find the height of water above the orifice when the level in the tank becomes stable. [6] Marks
 - **b-** Find the time interval for the level to fall from 3 m to 1 m above the orifice when the inflow is turned off.
 - c- If water, now, runs into the tank at rate of 0.02 m³/s and the orifice remaining open, find the rate of rise in water level when the level has reached a depth of 1.7 m above the orifice.

[8] Marks

Examiners: 1- Dr. Nabil Kinawy

2-Prof. Dr. G. El-Damarawy