Mansoura University
Faculty of Science
Chemistry Department
Subject: Quantum chemistry
Course: Chem. 244

Second year Major Chemistry Students Time Allowed: 2 hours Full Mark: 80 Marks Date: May, 2015

Answer the following question:

Question One:

A: Define the following:

(20 marks)

1. Stark effect

2. Quantum

3. Compton effect

4. Photon

5. Limitation of Bohr theory

6. Principle of angular momentum

7. Uses of Schrödinger equation

8. Zero point energy

9. Columbic force

10. Complex and Real functions

B: Drive Schrodinger wave eqn. And explain the conditions which must be satisfied for a wave function to be acceptable as a solution of Schrodinger eqn. ? (10marks)

C: Determine the Heisenberg uncertainty in momentum of an electron in a system, if the uncertainty in velocity is 10^{-5} . (5marks)

Question Two:

A: Calculate the first three energy value of:

(5marks)

I. An electron move in one dimensional box of 2 A° diameter.

B: Describe a function of a particle moves in a one dimensional box?

(5marks)

C: Explain graphically how emitted radiation from a heated body is dependent on it temperature. (5marks)

Question Three:

A: From Bohr calculation for hydrogen atom, the Balmer series n_i =4 and n_f =3 ,where C=3x10⁸ ms⁻¹ and h=6.6x10⁻³⁴ J.S. calculate the wave length. (5marks)

B: Explain briefly the following: When a photon colloid with a matter, the expected effect is highly dependent on the photon energy, explain (three cases).

(5 marks)

C: Deduce Line Spectra from Bohr Model for He atom (Z=2)

(5 marks)

Question Four:

A: Calculate the wave length and energy of a body with a mass 1 cm moving with a velocity 3 cm/sec. (5marks)

B: Explain why the lowest energy level for $CH_3 = CH - CH = CH - CH = CH_2 > CH_2 = C = CH - CH = CH - CH_3$. (5marks)

C: Deduce the operator form of Schrodinger equation??

(5marks)

With my best wishes

Dr/ Shady M. El-Dafrawy

Mansoura University
Faculty of Science
Chemistry Department
Subject: Biochemistry

Second Term مستوی ثانی کیمیاء خاص ك ح ۲۷۹

Date: 20, May, 2015 Time Allowed: 2 hours Full Mark: 80 Marks

Answer The Following Questions

- 1. Show factors which affect enzymatic activities [30 Marks]
- 2. Write about formol titration for amino acids, give equation and draw diagram.

[30 Marks]

3. Give an account about fatty acids and β-oxidation. [20 Marks]

مع تحيات

أ.د محمد عبد الحافظ الفار

Mansoura University

Faculty of Science

Chemistry Department

Subject: Chemistry

Course(s): Chem.233 Physical Organic Chemistry II

Second Term

2nd Level Chemistry Students

Date: May, 2015, 24 -5-2015

Time Allowed: 2 Hours

Full Mark: 60 Marks

Q. 1 Give the structure of the product(s) for each of the following reactions. Please do not forget to discuss

and draw out the reaction mechanism in each one.

ii -
$$Choose 7 only$$
 (21 Marks)

O

 CH_3 NaOH

iii -
$$\frac{\text{NH}_2\text{NHC}_6\text{H}_5}{\text{H}_3\text{O}^+}$$

iv -
$$H_3C$$
 OH C_2H_5OH H_2SO_4

$$vi - \bigvee_{H}^{H} O + C_6H_5$$
 $i - H_2SO_4$ $ii - H_2O$

viii -
$$O \stackrel{+}{\longrightarrow} O \stackrel{\sqcap}{\longrightarrow} H + H \stackrel{CH_3}{\longrightarrow} H^+$$

Q. 2 a) In each of the following pairs of compounds decide which member that fits the description.

Explain your answer

Choose 4 only

(8 Marks)

i-- More reactive toward nucleophilic addition

ii- Has lower PKb value

iii- More suitable for yilde synthesis with Ph₃P/Bu-Li

iv- Much stronger base

v- More reactive toward acyl substitution

vi- Form stable hydrate

b) Compare the behavior of aniline and N-methylaniline toward benzenesulfonyl chloride (C₆H₅-SO₂-Cl)

followed by treatment with KOH (aq)

(5 Marks)

c) Explain why bromoketone I forms different bicyclic compounds under different basic reaction conditions

Q. 3: Answer 4 only of the followings

a - For the Hydration reaction of aldehydes or ketones in acid medium, the results shown in the table are obtained: $R^{1}COR^{2} + H_{2}O / H^{+} \longrightarrow R^{1}C(OH)_{2}R^{2}$ (5 Marks)

20K + 1120 / 11		K C(O11)2K	(2 Marks
\mathbb{R}^1	R^2	% conversio	n to product
Н	Н	99.96	
CH ₃	CH ₃	0.14	
CF ₃	CF_3	80	

- i- Write the steps involved in the formation of the product
- ii- Explain the difference in percent conversion of reactants to the product as shown in the table.
- b) Assume that, an equimolar mixture of C₆H₅-CHO and C₆H₅-CO-CH₃ is treated with NaOH solution. Write equations for the possible combinations which may occur. (5 Marks)
- c) Arrange the following in order of decreasing with respect to their basic strength. Explain.

(5Marks)

$$NO_2$$
 & O_2N NH_2 & H_3CO NH_2

d) When 4-hydroxybutanal is treated with methanol in the presence of an acid catalyst, 2-methoxytetrahydrofuran is formed according to the following equation. Explain (5 Marks)

e) In Cannizzaro reaction of benzaldehyde when treated with concentrated base (NaOH). When the reaction is carried out in D₂O, the alcohol that is isolated contains no deuterium bound to carbon. What does this suggest about the mechanism for the reaction?

(5 Marks)

Examiners: Prof. Dr. Saad Elmorsy

Dr. Eman Keshek

Dr. Ebrahim Abdel-Galil

Dr. Manal Elfedawy

Mansoura University
Faculty of Science
Chemistry Department
Subject: Chemistry
Course(s): Chem (245) Physical
Chemistry of liquids and

solutions

كلية الملوم كلية الملوم جامعة المنصورة Second Term Second year Students Special Chemistry-level 2

Date: May 2015 Time Allowed: 2 hours Full Marks: 60 Marks

Answer the following questions:

1. a) Explain the partial molar volume, partial molar enthalpy and their methods of determination.

(10 marks)

- b) At 303.15K calculate Δ G, Δ H and Δ S (per mole solution) for mixing
 - 0.3 mole of pure benzene with 0.7 mole of pure toluene.(10 marks)
- 2. a) Write shortly on the different colligative properties of solutions and Van't Hoff factor, derive one equation of the colligative properties and methods of determination of the molecular weight of the solute in solution.

(10 marks)

b) The boiling point of benzene is raised from its normal value 80.3 to $82.7^{\circ}C$ by addition of 14 g of biphenyl $C_{6}H_{5}C_{6}H_{5}$ to 100 g of benzene . What are the boiling-point-elevation constant and the heat of vaporization of benzene according to these data.

(10 marks)

3. a) Explain the different applications of conductivity of electrolyte solutions.

(10 marks)

b) The specific conductance of 0.21×10^{-2} of acetic acid in 20° C is 5.3×10^{-4} Ohm⁻¹ cm² mol⁻¹. The limiting conductance at infinite dilution of the hydrogen and acetate ions at the same temperature are 340 and 82 Ohm⁻¹ cm² mol⁻¹, respectively . Calculate the dissociation constant of acetic acid. (10 marks)

 $(R = 0.0821 L atm K^{-1}, molecular weight of C = 12, H = 1)$

Mansoura University Faculty of Science **Chemistry Department** Subject: Nuclear& **Bonding Chemistry** Course(s): Chem. 222

Second Term Second Year Chem. Date : May, 2015 Time Allowed: 2 hours Full Mark: 60 Marks

Answer the Following Questions (each question 15 marks)

Section (A): Nuclear chemistry

1.a) Complete the following nuclear reactions:

[3 Marks]

- i) $^{30}P \rightarrow ^{30}{}_{14}Si + \dots$ ii) $^{15}{}_{4}Be + ^{4}{}_{2}He \rightarrow ^{12}{}_{6}C + \dots$
- iii) 14 ₇N + \rightarrow 17 ₈O + 1 ₁H
- b) Prove that 1½ of radioactive elements given by 0.693/K where K the [4 Marks] decay constant.
- c) $^{234}_{90}$ Th disintegrates to give $^{206}_{82}$ Pb as the final product. How many α and β particles are emitted during this process [4 Marks]
- d) Explain the differences between chemical and nuclear reaction.

[4 Marks]

2. a) Write briefly on:

[4 Marks]

- i) Isotopes (types and two methods of separating)
- ii) Nuclear forces inside the nucleus
- b) Calculate the energy liberated in the fusion reaction to produce 1 mole of helium from deuterium (${}^{2}_{1}H = 2.014102$, ${}^{4}_{2}He = 4.002603$ [3 Marks] amu)
- c) The radio activity of radioactive isotope falls to 12.5 % in 90 days. Calculate the t1/2 and K [4 Marks]
- d) Explain the application of radiation isotopes in medicine and [4 Marks] agriculture.

Section (B):Bonding, Structures & Symmetry

- QI-a) Show with drawing the difference between body centered cubic and hexagonal closest packing structures with examples. [4 Marks]
- b) The structure of metal affects its mechanical properties such as malleability and ductility. Explain. [4 Marks]
- c) True and false (circulate the correct response and correct the false one) [7 Marks]
- i) T F The S^{2-} ion is tetrahedrally sited.
- ii) T F Wurtzite and zinc blende are polymorphs of ZnS.
- iii) T F bcc structure is more efficient at filling the space than ccp.

Prof.Dr.G.Abu El-Reash & Dr.O.El-Gammal					
With Best Wishes					
i) paramagnetic. ii)diamagnetic.	iii) none of the above.				
10) Superconductors are					
i) ccp, 0.45. ii) fcc,.42. iii)hcp, 0.55	iv)bcc, 0.93.				
9) CsCl has astructure with r ⁺ /r ⁻ equals	,				
i) high T. ii) low T.	iii) low P.				
can be made weaker only at					
8) The attractive forces between metal ions and d	elocalized electrons				
i) CsCl. ii) Zinc blende.	iii) NaCl.				
7) Diamond has essentially the same structure as.					
i) It has the coordination number 6:3. ii) The strii) Radius ratio is between 0.41&0.73. iv) all the					
6) Which statement is <i>correct</i> about rutile (TiO ₂)	structure?				
occupying the same sites as Ca ²⁺ ions in CaF ₂ .	atmiotimo?				
iii) The structure is based on an CaF ₂ structure, with Na ⁺ ions in Na ₂ S					
ii) Each Na ⁺ ion is within a cubic arrangement o	I S 10ns.				
i) The coordination number of each S ²⁻ centre is	S 8.				
about this structure?					
5) Na ₂ S crystallizes with antifluorite structure. V	Which statement is true				
i) CdI ₂ . ii) CaF ₂ . iii) ZnS.					
4) An example of a compound that crystallizes wi					
relatively large.					
iii) Band gaps vary among different semiconductor					
ii) Doping Si with As enhances its semiconducting properties.					
i) A partially filled band is characteristic of a metal.					
terms of band theory. Which statement is <i>not tru</i>					
3) The behavior of metals and semiconductors is u					
i) 6:6, As,Ni. ii) 6:3, Ni,As. iii) 6:6, N	Ni, As. iv) 8:4, Ni, As.				
layers of atoms.	TO SUIT THAT WALLETT				
packed is withatoms occupying thesit	es between all				
2) The coordination number of spheres in NiAs, si					
ii) The lattice contains both tetrahedral and octal iii) Layers of close-packed atoms are stacked in a					
i) The packing is more efficient than in a body-ce					
1) Which statement is <i>incorrect</i> about a cubic close.					
QII: Choose the appreciate answer for the follows					
vii) T – F Intrinsic semiconductor are basically in					
has fluorite one.	1.4				
vi) $T - F$ [Co (NH ₃) ₆ adopts antiflourite structure	while K ₂ [PtCl ₆]				
number 12.					
v) T-F Pb, Sr, Au have hexagonal close packir					
iv) $T - F$ In NaCl, the radius ratio is 0.255 with	bcc structure.				

iv) T – F In NaCl, the radius ratio is 0.255 with bcc structure.
v) T-F Pb, Sr, Au have hexagonal close packing with coordination
number 12.
vi) T - F [Co (NH ₃) ₆ adopts antiflourite structure while K ₂ [PtCl ₆]
has fluorite one.
vii) T - F Intrinsic semiconductor are basically insulators.
QII: Choose the appreciate answer for the following:- [15 Marks]
1) Which statement is <i>incorrect</i> about a cubic close-packed lattice?
i) The packing is more efficient than in a body-centered cubic lattice.
ii) The lattice contains both tetrahedral and octahedral holes.
iii) Layers of close-packed atoms are stacked in an ABABAB pattern.
2) The coordination number of spheres in NiAs, simple hexagonal close-packed is withatoms occupying thesites between all
layers of atoms. i) 6:6, As,Ni. ii) 6:3, Ni,As. iii) 6:6, Ni, As. iv) 8:4, Ni, A
3) The behavior of metals and semiconductors is usually discussed in
terms of band theory. Which statement is not true?
i) A partially filled band is characteristic of a metal.
ii) Doping Si with As enhances its semiconducting properties.
iii) Band gaps vary among different semiconductors but are always
relatively large.
4) An example of a compound that crystallizes with a layer structure is:
i) CdI ₂ . ii) CaF ₂ . iii) ZnS. iv)SnO ₂
5) Na ₂ S crystallizes with antifluorite structure. Which statement is true
about this structure? $\frac{1}{2} = \frac{1}{2} = $
i) The coordination number of each S^{2-} centre is 8.
ii) Each Na ⁺ ion is within a cubic arrangement of S ²⁻ ions. iii) The structure is based on an CaF ₂ structure, with Na ⁺ ions in Na ₂ S
occupying the same sites as Ca ²⁺ ions in CaF ₂ .
6) Which statement is <i>correct</i> about rutile (TiO ₂) structure?
i) It has the coordination number 6:3. ii) The structure is distorted bcc.
ii) Radius ratio is between 0.41&0.73. iv) all the above.
7) Diamond has essentially the same structure as
i) CsCl. ii) Zinc blende. iii) NaCl.
8) The attractive forces between metal ions and delocalized electrons
can be made weaker only at
i) high T. ii) low T. iii) low P.
9) CsCl has astructure with r ⁺ /r equals
i) ccp, 0.45. ii) fcc,.42. iii)hcp, 0.55 iv)bcc, 0.93.
10) Superconductors are
i) paramagnetic. 11) diamagnetic. 111) fiolie of the above. With Best Wishes
Prof.Dr.G.Abu El-Reash & Dr.O.El-Gammal
Froj. Di. O. Ava El-Neush & Di. O. Li-Guillian

Mansoura University Faculty of Science Chemistry Department Subject: Chemistry Course: Chem. 234

Organic Spectroscopy

Second Term 2rd Level:

Chemistry program Date: 07 June. 2015

Time Allowed: 2 hrs Full Mark: 80 Marks

	Answer A	All Questions;	
Que	stion 1: Select the correct	answer	(30 Mark)
	hich of the following isomeric dibromopropoton NMR spectrum? A) 1,1-dibromopropane B) 1,3-dibromopropane	C) 1,2-dibromoprop D) 2,2-dibromoprop	pane
2. H	ow many different types (sets) of hydrogens A) 2 B) 3 C) 4	are there in 2,2-dimen D) 5	thylpentane?
	hich of the following gives the furthest down H-NMR spectrum? A) (CH ₃) ₄ C B) (CH ₃) ₃ N		in its proton D) CH₃F
	hat is the splitting type of the indicated met lowing compound? $CH_3CH_2OCH_2$ CA) singlet B) doublet		the ¹ H-NMR of the D) quartet
	e proton NMR of 1,1-dibromoethane would A) downfield doublet and upfield quartet. C) downfield doublet and upfield triplet.	B) downfield	quartet and upfield doublet.
	I-NMR spectrum of a compound, $C_3H_6Cl_2$ 1:2 ratio, respectively. Which compound be A) 1,1- Dichloropropane C) 1,2- Dichloropropane		data? oropropane
	infrared spectroscopy, absorption of electronic infrared spectroscopy, absorption of electronic infrared spectroscopy. A) Vibrational B) Electronic		Psults in D) Nuclear
	hich one of the following has a λ_{max} in its U velength? A)	V-visible spectrum with B) D)	th the longest

9) Which compound would be expected to show intense IR absorption at 2230 cm-1?

A) $(CH_3)_2CHCN$

B) CH₃CH₂CH₂COOH

C) CH₃CH₂CH₂CONH₂

- D) $(CH_3)_2CHCH_2OH$
- 10) Which compound would be expected to show intense IR absorption at 3367, 3282 cm-1?
 - A) but-1-ene
- B) CH3OCH₂CH3
- C) PhCOOH
- D) PhCH₂NH₂

11) Which of the following has a C-H stretch that occurs at the highest stretching frequency?

- A) hex-1-ene
- B) hexane
- C) hex-2-yne
- D) hex-1-yne

12. Which of the following C_5H_8 compounds best fits the proton NMR spectrum shown below?

- A) 1-Pentyne
- B) 1-Butyne
- C) Cyclopentene
- D) 1-Methyl cyclobutene

13. Which of the following C_4H_7OCl compounds best fits the proton NMR spectrum shown below?

- 9) Which compound would be expected to show intense IR absorption at 2230 cm-1?
 - A) (CH₃)₂CHCN

B) CH₃CH₂CH₂COOH

C) CH₃CH₂CH₂CONH₂

D) (CH₃)₂CHCH₂OH

10) Which compound would be expected to show intense IR absorption at 3367, 3282 cm-1?

A) but-1-ene

B) CH3OCH₂CH3

C) PhCOOH

D) PhCH₂NH₂

11) Which of the following has a C-H stretch that occurs at the highest stretching frequency?

A) hex-1-ene

B) hexane

C) hex-2-yne

D) hex-1-yne

12. Which of the following C_5H_8 compounds best fits the proton NMR spectrum shown below?

- A) 1-Pentyne
- B) 1-Butyne
- C) Cyclopentene
- D) 1-Methyl cyclobutene
- 13. Which of the following C_4H_7OCl compounds best fits the proton NMR spectrum shown below?

Question 2:

(15 Mark)

Use the Woodward-Fieser rules to predict the expected λ_{max} for the following compounds:

Question 3:

(15 Mark)

Give a structure consistent with each of the following sets of spectral data:

a; $C_6H_{10}O$ "IR (Cm⁻¹) v = 3000, 1700, 1606 Cm⁻¹"

¹H-NMR $\delta = 1.83$ (singlet, 3H) & 2.27 (singlet, 6H) & 6.15 (singlet, 1H).

b; C₅H₉BrO₂

 1 H-NMR δ (ppm) : 1.20 (triplet, 3H), 2.90 (triplet, 2H), 3.90 (triplet, 2H) and 4.2 (quartet, 2H).

c; C_5H_8O "IR (Cm⁻¹) v = 3600, 3300, 2215 Cm⁻¹ "

H-NMR $\delta = 1.43$ (singlet, 6H) & 2.20 (singlet, 1H) & 2.90 (singlet, broad 1H).

Question 4:

(20 Mark)

Write what you know about:

A) Spin-Spin coupling.

B) The role of inductive effect in the value of λ_{max} and (δ) values.

C) Tetramethylsilane (TMS) is consider a good reference in 1H-NMR spectrum Why?

D) Rank with discussion the following bonds in order of increasing stretching frequency (cm⁻¹) in IR spectroscopy.

 N — H , C — H , C = N , C = N

With My Best Wishes Prof. Dr. El-Sayed I. El-Desoky