دور مايو 2015 التاريخ: 5/16/2015

الفرقة: الرابعة المادة: تحليل دالي

Answer the following questions

First: Objective questions: (20 marks)

Among the following statements mark the true and false ones with ($\sqrt{\ }$) and (\times) respectively. Justify your answer for ONLY TWO of them: (b) A complete metric space is a Banach space.() (c) Any subspace of a Banach space is also a Banach space.() (d) The sequence $\left(\frac{1}{\sqrt{n}}\right)$ belongs to the space ℓ^3() (e) If $A = \{x_1, x_2, x_3, x_4, x_5, x_6\} \subseteq \ell^{\infty}$, it follows that the linear hull H(A) is separable.....() (f) For any normed space E over K, the space L(ℓ^{∞} , E) is a Banach space.....() (g)A normed space E that is linearly isometric to a Banach space F, is itself Banach space.() (h) For any normed space E over K, the dual space E is a Banach space.() (i) Every linear transformation S: $K^5 \to \ell^{\infty}$ is continuous on R^5() (j) If E is a normed space over K, then any two norms defined on E are equivalent.()

Second: Subjective questions (26 marks each)

[2] a. Define: a metric space - the space ℓ^p .

Let p > 1, q = p/(p-1). Prove that if $(\alpha_n) \in \ell^p$, $(\beta_n) \in \ell^q$, then the series $\sum \alpha_n \beta_n$ is absolutely $\sum_{n=1}^{\infty} |\alpha_n \beta_n| \le \left(\sum_{n=1}^{\infty} |\alpha_n|^p\right)^{\frac{1}{p}} \cdot \left(\sum_{n=1}^{\infty} |\beta_n|^q\right)^{\frac{1}{q}}.$ (10 marks) convergent; and

b. Show that a convergent sequence in a metric space has a unique limit. (6 marks)

(2 marks) [3] la. Define: a separable space.

Show that the space ℓ^p is separable $(p \ge 1)$. (8 marks)

b.Let E,F be normed spaces over K, E \neq {0}, and let T:E \rightarrow F be a linear mapping of E onto F. Prove that that T is 1-1 and T^{-1} is bounded if and only if there exists a constant m > 0 such that (10 marks) $||Tx|| \ge m$, for all $x \in E$ with ||x|| = 1.

[4] a. Consider the mapping T: $\mathbb{R}^2 \to \mathbb{R}^3$, T(a,b) = (2a+b, a-2b, b) for all $(a,b) \in \mathbb{R}^2$ Show that T is a bounded linear transformation on \mathbb{R}^2 and then find $\|T\|$. (9 marks)

b. Let E,F be normed spaces over K and suppose that E is finite-dimensional. Prove that:

(i) E is a Banach space, and (ii) every linear transformation $T: E \to F$ is continuous on E.

(3+8 marks)

(4 marks)

Mathematics department

Date: 19-5-2015 Time: 2 hours Full Mark: 80

4th. Final exam.
Mathematics group
Partial differential
Equations 429

Answer the following questions:

[1] a) Find D' Alembert solution of the wave equation $\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}$ subject to the B.

C's u(x,0) = f(x) and $\left(\frac{\partial u}{\partial t}\right)_{t=0} = g(x)$ and show that the solution is unique and stable. (10 Marks)

b) Show that the solution u(x,y) of Laplace's equation $\nabla^2 u = 0$ in the region 0 < y < a, x > 0 satisfying u(x,0) = f(x) and u(x,a) = 0 where f(x) is a given function and a is a constant is

$$u(x,y) = \frac{1}{\pi} \int_{0}^{\infty} \left[\int_{-\infty}^{\infty} \frac{\sinh \lambda (a-y)}{\sinh \lambda a} f(\xi) \cos \lambda (\xi - x) d\xi \right] d\lambda$$
 (15 Marks)

[2] Show that the solution of the equation $\frac{\partial^2 u}{\partial x^2} = \frac{1}{k} \frac{\partial u}{\partial t}$ which satisfies the conditions

$$\left(\frac{\partial u}{\partial x}\right)_{x=0} = \left(\frac{\partial u}{\partial x}\right)_{x=a} = 0, t > 0 \text{ and } u(x,0) = x, 0 \le x \le a \text{ is}$$

$$u(x,t) = \frac{1}{2}a - \frac{4a}{\pi^2} \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} \cos \frac{(2n+1)}{a} \pi x e^{-\left[(2n+1)^2 k\pi^2 t\right]/a^2} \tag{20 Marks}$$

[3] Find the solution of the interior and exterior Dirichlet problem $\nabla^2 u = 0$ in R or outside R where R is a circular region of radius a and $u(a,\phi) = f(\phi)$, $u(r,\phi+2\pi) = u(r,\phi)$ where f is a given function and ϕ is the angular coordinate, u remains bounded as $r \to \infty$. (20 Marks)

[4] Using Laplace's transform to solve the equation $x \frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} = x$ (x > 0, t > 0) given u(x, 0) = 0, x > 0 and u(0, t) = 0, t > 0 (15 Marks)

دور مایو ۲۰۱۵

الزمن: ساعتان

كلية العلوم - قسم الرياضيات

المستوى: الرابع

الشعبة: رياضيات المادة : تحليل مركب (٢) ر ٤١٧

Answer the following questions

[1]-a) Define pole of order m for w = f(z) at $z = z_0$. If f(z) has a pole of order m at $z = z_0$. Then prove that

Res
$$[f,z_0] = \lim_{z \to z_0} \frac{1}{(m-1)!} \frac{d^{(m-1)}}{dz^{(m-1)}} [(z-z_0)^m f(z)]$$
 (10 Marks)

b) Prove that
$$\int_{d}^{2\pi} \frac{d\theta}{1 + b\sin\theta} = \frac{2\Pi}{\sqrt{1 - b^2}} (|b| < 1)$$
 (10 Marks)

[2]-a) Define zero of order m for w = f(z). Let N and P are the number of zeros and poles of f(z). Then prove that

$$\frac{1}{2\Pi}\Delta_{c} \arg f(z) = N - P \tag{10 Marks}$$

b) Desribe a Riemann surface for $w = z^{1/4}$. (10 Marks)

[3]- a) Under the transformation $w = \sqrt{2}e^{i\pi/4}z + (1-2i)$ find the image of R: x = y = 0, x = 1 and y = 2 in the w – plane. (10 Marks)

b) Prove that under $w = \frac{1}{2}$ straight lines and circles are mapped onto straight lines or circles. Find the image of x + 3y - 2 = 0 and

$$x - 3y + 2 = 0$$
 under $w = \frac{1}{z}$. (10 Marks)

[4]- a) Prove that $f(z) = \sin z$ is not bounded. Discuss the analyticity of $w = \cot z$. (3 Marks)

b) Prove that
$$\int_{0}^{\infty} \frac{\cos 2x}{x^2 + 1} dx = \frac{\pi}{2} e^{-2}.$$
 (4 Marks)

c) Prove that the zeros of an analytic function are isolated. (3 Marks)

Good Luck

Prof. Dr. M. K. Aouf

El Mangaura Egyet	
El-Mansoura- Egypt Forth year of B.Sc. Mansoura University Program: B.Sc. (Statis. & Comp. Sc.) And	المنصورة - مصر
Faculty of Science Subject: Graph Theory Mathematics Department Course Code:	كلية العلوم
First Term: June 2015 Date: 26 June. 2015	قسم الرياضيات Time: 2 hou
Answer the following five questions:	Mark
- a- Find the number of edges (or arcs) $ E(G) $ of the graph G of e	Size is
 (i) G is a disconnected graph with n vertices and maximal number of e (ii) A simple graph with n vertices and maximal number of e (iii) A simple graph G with 4 components, 10 vertices, and having a maximal number of edges. 	umber of edges. (2 points)
(iv) G is a bipartite graph with $2n$ vertices having a maximal number of edges.	(2 points)
(v) <i>G</i> is a simple graph having maximum number of edges, 2 <i>n</i> vertices and no triangles.	(2 points)
b- Give an example of each of: (mention the reason (briefly)):	
 (i) Two non-isomorphic simple graphs with 4 vertices and 4 (ii) A regular graph of order 2 with two components. (iii). A maximal planar graph with 5 vertices. (iv) Give an example of amonplanar graph with 7 vertices. (v) An adjacency matrix of a graph with 4 vertices and 4 edge 	(2 points) (2 points) (2 points)
Prove each of:	
(i) Any connected finite graph G without circuits must have one vertices of degree 1.	at least (5 points)
(ii) If there is a direct circuit in a digraph, then there is a direct	ect cycle (5 points)
(iii) The two graphs K_5 and $K_{3,3}$ are not planar.	(5 points)
(iv) If G be a simple graph with n vertices and k components $n-k \le E(G) \le \binom{n-k+1}{2}$.	
3- a- Let G be a connected graph. Show that: G is a tree $\Rightarrow E(G) = V(G) - 1$	(8 points)
b- Give the definition of the isomorphism between two simple games. And give two non-isomorphic graphs with 7 vertices satisfyin $\deg v_1 = \deg v_2 = 1$, $\deg v_3 = \deg v_4 = \deg v_5 = 2$, and $\deg v_6 = 2$	ng:
a- If G is a graph with deg $v \ge 2$ for all $v \in V(G)$, then each component G_i has a cycle.	(6 points)
b- Let <i>G</i> be a plane graph with, <i>n</i> vertices, <i>m</i> edges and <i>r</i> regions Mention and prove Euler formula for plane graphs?	(7 points)
c- Define what is rooted tree? Let $T = (V, E)$ be a rooted tree will Prove that indeg $v = 1$ for all $v \in V - v_0$. And prove that T has	

0

Full Mark: 80 points

Examiner: Dr. Magdi H. Armanious

امتحان دور مايو ٢٠١٥ التاريخ: / ٢٠١٥ الزمن: ساعتان

كلية العلوم- قسم الرياضيات

المستوى: الرابع الشعبة: رياضيات المادة: هيدروديناميكا

Answer the following questions

[1]-a) State with proof the continuity equation.

b) The velocity and density fields in a flow are given by

$$Q_x = kx^2y - \frac{\alpha}{y}, \quad q_y = -kxy^2 + \frac{\beta}{x}, \quad q_z = \varepsilon$$

and

 $\rho = \rho_0 \exp[-\gamma(xy - ct)]$, where $\alpha, \beta, k, \epsilon, \gamma$ and ρ_0 are constants, show that the flow satisfies the continuity equation if $c = \alpha + \beta$.

[2]-a) Show that $\frac{D}{Dt} d\rho = d \frac{D\rho}{Dt}$ and hence prove the constancy of circulation for an ideal flow.

b) Find the circulation of $\underline{q} = (x^2 - y^2)\underline{i} - 2xy\underline{j}$ around the circle $x^2 + y^2 = 1$.

[3] Show that the combination of a uniform steam U and an apposite dipole of moment μ represent the flow around a circular cylinder. If a circulation k is added to the system find the positions of stagnation points.

د/ محمود حمدی

مع أطيب الأمنيات بالنجاح والتوفيق

Mansoura Univ. Faculty of Science Mathematics Dept. Subject: Math. R426 4th year math and Statistics Course Math. Model Date Jun.2015

Time: 2 hours

80 marks

- 1) i) Solve the following stochastic equation dX=rXdt+sXdw, where r,s are positive constants. Use it to explain the disappearance of some types of fish.
 - ii) Solve the colonel Blotto's game. Comment on its real application. [27 marks]
- 2) i) Explain the epsilon constraint method to solve multi-objective optimization problem. Apply it to the following problem: $\min f1 = x-y, f2 = 2y-x,$ $3 \ge x, y \ge 0$.
 - ii) Solve TSP with the following matrix [* 456, 3*45, 98*3, 969*]. Discuss metaheuristic optimization.

[26 marks]

- 3) i) Why fractals are abundant in nature. Derive the fractal dimension of the Cantor set.
 - ii) Study SIS model on a static graph. Why do we need SWN.
 - iii) Comment on the need for networks to study either cascade failure in power systems or economy.

[27 marks]