(rcq co) anise cito 1 - cop, los r

Mansoura University Faculty of Science Physics Department 3rd Level Exam. January 2015 Time allowed: 2 hrs

ف Molecular Spectroscopy 329

Answer the following questions.

- 1-a- Compare between the following two energy levels.

 The allowed rotational energy levels of a rigid diatomic molecule &

 The allowed vibrational energy levels of a diatomic molecule undergoing anharmonic oscillations.

 (15 marks)
 - b- The "Born-Oppenheimer approximation" represents a diatomic molecule that can execute rotations and vibrations quite independently. Explain. (15 marks)
- 2-a-State and then discuss in detail the microwave activity of the following molecules HBr $^{13}C^{16}O$ CS_2 CH_4 (10 marks)
 - b-<u>State</u> and then <u>discuss</u> in detail the Infra Red (IR) activity of CO₂ molecule for the bending & asymmetric stretching modes of vibration. (10 marks)
 - c- Calculate the relative population including degeneracy of N_3 / N_0 of a rigid diatomic molecule where the rotational constant B=10 cm⁻¹ and T=300 K°. Comment. (10 marks)
- 3- The spectrum of a certain diatomic molecule executing anharmonic oscillation exhibits a fundamental transition centered at 1876.06 cm⁻¹ and first overtone at 3724.2 cm⁻¹. Estimate the following a-the equilibrium frequency of oscillation $\overline{\omega}_e$ b-the anharmonicity constant χ_e

c-the zero point energy ε_0 in cm⁻¹ and Joule.

d-the force constant k

{The masses of the molecule are $m_1=2.325\times10^{-26}$ kg, $m_2=2.656\times10^{-26}$ kg} (20 marks)

 $(c=3x10^{10} \text{ cm/s} \text{ h}=6.625x10^{-34} \text{ J.s} \text{ 1eV}=1.6x10^{-19} \text{ J} \text{ m}=9.11x10^{-28} \text{ g} \text{ k}=1.38x10^{-23} \text{ J/K}^{\circ}$

Best Regards

المستوى النائل - فترا رصري - فترا الممرا = في الا

Mansoura University
Faculty of Science
Physics Department

Subject: Phys. 327
Physics: Polymer Physics

Academic Level: 3rd Level Program: Biophysics

First Term Exam:25/12/2014

Time Allow: 2 hours Full Mark: 80 Marks

Answer (ALL) Questions:

- 1) A- There are many popular techniques used to the study polymer structure, discuss this sentence and describe the X-ray technique. [13 Mark]
 - B- Write briefly on:

a- Electrical conductivity of polymer.

[7 Mark]

- 2) A- Discuss in details the first order phase transitions in polymer. [10 Mark]
 - B- Write briefly on:

a- Effect of temperature and pressure on polymerization.

[10 Mark]

3) A- Define the following:

[9 Mark]

- a- The physical states of polymer.
- b- The Ceiling temperature.
- c- Copolymer and its different types.
- B- Discuss two different methods used to determine the glass transition temperature Tg, Mention only three factor affecting it. [11 Mark]
- 4) Compare between:

[20 Mark]

- a- Thermoplastic and Thermosets polymer.
- b- Branched and Crosslinked polymer.
- e- Atactic and Isotactic polymer.
- d-Anionic and Cationic polymerization.

"With Good Luck"

Examiners:

- Dr. Maysa Ismail.

Prof. Dr. M. El-Tonsy

4-1 10 151, 100 81 - 0300, 150 M

MANSOURA UNIVERSITY
FACULTY OF SCIENCE
MATHEMATICS DEPARTMENT
FINAL EXAM 2014/2015G

FIRST SEMESTER
TIME: 2 Hours
MATH 301: Biostatistics
TOTAL MARKS: 80 Marks

Level 3, Programs: Biophysics, Microbiology, Chemistry & Botany, Chemistry & Zoology and Environment Science.

Answer The Following Questions

Question 1:

(a) Patients were treated for insomnia by some drug. Recorded below are the hours of sleep the patients got during the second night after treatment began:

(i) Complete the following table:

[9 Marks]

True class interval	Midpoint	Frequency	Relative frequency	Cumulative frequency
2.55 - 4.55	3.55		en e	13
4.55 - 6.55		17	0.34	
			*- • • •	43
		1	0.02	
			0.08	48
		0	, , ,	
–				

- (ii) What percentage of patients got 6.55 or less hours of sleep during the second night after treatment? [4 Marks]
- (iii) Graph a cumulative frequency distribution.

[4 Marks]

(b) Let P(A) = 0.4 and $P(A \cup B) = 0.7$. Find P(B) if:

[9 Marks]

(i) A and B are independent.

(ii) A and B are mutually exclusive.

(iii) A subset of B.

Question 2:

(a) Suppose we measure the duration of labor (in hours) for a sample of pregnant woman and obtain:

Duration of labor	0.5 - 2.5	2.5 - 4.5	4.5 - 6.5	6.5 - 8.5	8.5 - 10.5	10.5 - 12.5	12.5 – 14.5
Frequency	10	15	30	20	10	8	7

Find approximate values for:

[18 Marks]

- (i) The sample mean, mode and median.
- (ii) The variance and coefficient of variation.
- (b) The probability that a patient recovers from a rare blood disease is 0.45. If 20 people are known to have contracted this disease. [9 Marks]
 - (i) What is the probability that at least 3 survive.
 - (ii) What is the probability that exactly 8 survive.
 - (iii) What is the expected number and variance of the patients that be survived.

Question 3:

- (a) Suppose that in the population of healthy females, the red blood count (divided by 10¹²/l) has an normal distribution with a mean of 4.8 and a standard deviation of 0.3. What is probability that the red blood count is:
 - (i) greater than 5,
- (ii) less than 3.8,
- (iii) between 4.2 and 5.4
- (b) Certain tubes manufactured by a company have a mean lifetime of 900 hr., and standard deviation of 50 hr. Find the probability that a random sample of 64 tubes taken from the group will have a mean lifetime between 895 and 910 hrs.

 [9 Marks]
- (c) The probability that a student, selected at random from a certain College, will pass a certain economics course is 4/5 and will pass both economics and statistics courses is 1/2 What is the probability that he will pass statistics if it is known that he had passed economics?

 [6 Marks]

Hint: $\Phi(0.67) = 0.7486$, $\Phi(0.8) = 0.7882$, $\Phi(1.6) = 0.9452$, $\Phi(2) = 0.9773$, $\Phi(3.33) = 0.9994$.

Mansoura University Faculty of Science Physics Department Course: Phys. 314

First Term Exam. Jan. 2015 3rd year Phys. and Bio-phys. Allowed Time: 2 hours Full Mark: 80

Quantum Mechanics

Answer the following questions:

[1-a] Write on the basic postulates of quantum mechanics.

[5 Marks]

[1-b] A beam of mono-energetic particles of energy E moves freely in x-direction is subjected to a potential jump of height $V_0 \le E$. Determine the reflection and transmission coefficients of the beam and compare the results with those calculated classically.

[15 Marks]

[2-a] Using the time-independent perturbation theory to estimate the first order corrections on the energy eigen-values and their corresponding eigen-functions of a particle moves in a perturbed system. [12 Marks]

[2-b] Verify that $[x^2, P_x] = 2ihx$, and calculate [E,t].

[8 Marks]

[3-a] Solve the one-dimensional Schrodinger equation to determine the allowed energy levels of a particle moves freely inside an infinite potential well of width L. [12 Marks]

[3-b] If this potential is perturbed by $\mathbf{H'}=V_0$ in the region 0 < x < L/2, calculate the 1st order correction on the ground state energy of the particle. [8 Marks]

[4-a] Determine the allowed energy levels and the corresponding eigen functions of a one-dimensional harmonic oscillator. [15 Marks]

[4-b] Discuss the degeneracy of a spherical harmonic oscillator and calculate its value for the 2nd excited state energy level (N=2). [5 Marks]

WITH OUR BEST WISHES

Examiners:

Prof. Dr. A. R. Degheidy

and

Dr. E. B.Elkenany

٢ في فا جون عن في المونة من مية في ١١١

Mansoura University
Faculty of Science
Physics Department
Subject: Molecular
biophysics
Physics

Second Term Exam 3st Year Biophysics Students Date:12 Jan /2015 Time Allowed: 2 hours

1) Write short notes on the following:-
a) – Nucleotides (4marks)
b) – Dehydration synthesis
d)- Lipids (4marks)
a) Compare between the light microscope and electron microscope(10 marks) Compare between different types of RNA(10 marks)
3)- Explain the following words a)- transcription, translation and elongation(15 marks) b)- Phospholipids(5 marks) c) - Steroids(5 marks)
4) a_Prove The resolution is proportional to the wavelength (5 marks)
b- Compare between types of guns in electron microscope(5 Mark)
c- Explain the Electron-specimen interaction

Good luck Dr. fatma elzhraa

٣ فزيار جوى - القلل الحي القلل لوزى (ك ١١٥)

Mansoura University
Faculty of Science
Chemistry Department
Subject: Chemistry
Course(s): Volumetric
gravimetric analysis

First Term
Date: Jan, 2015
Time Allowed: 2 hours
Full Mark: 60 Marks
Third Biophysics Students

Answer The Following Questions

- 1.a) Mention the requirements for successful gravimetric method. [7.5 Marks]
- b) Calculate the pH of the solution that results when 50 ml of 0.02 M Ba(OH)₂ are mixed with 100mlof 0.04 M HCl. [7.5 Marks]
- 2.a) Explain the behavior of acid base indicator and its pH range. [7.5 Marks]
 - b) Mohr titration of 0.4137g sample required 35.82 ml of standard 0.1 M Ag $N0_3$ calculate the percentage of chloride in the sample. (atomic wt. of Cl = 35.5). [7.5 Marks]
- **3.a)** Discuss the metallic indicators in EDTA titrations.

[7.5 Marks]

- b) Calculate the Ksp value for $Ag_2 CrO_4$ its solubility 2.5×10^{-2} g/L (Mol. Wt. = 322). [7.5 Marks]
- 4.a) Define the following (mention the law and example if present). [10 Marks]
 - 1. Buffer capacity

2. Co-precipitation

3. Rejection of a result.

4- Types of determinate errors.

- 5- Accuracy
- b) Give the reason of

[5 Marks]

- 1. Volhard's method must be carried out in acidic solution while Mohr's method in neutral solution.
- 2. EDTA titration is very useful for titration of mixtures of different cations. .

With best Wish

Dr. W. M. Abou El-Maaty

الم يون الله عن فريار جون - فتراجوة القامة فع ١١٠٠

D.Maysa Esmael

Mansoura University First semester 2014-2015 3 rd Level Biophysical stude	nts			
Faculty of Science Date 29/12/2014 Full Mark: 80 Marks				
Physics Department Allowed Time : 2 Hours				
Course Code : Bio-Physics 310 Course Title : Biophysical Radiat	ion			
Answer all the following questions :	arks			
1a- What are the different forms of energy and show in table the characteristics of the different electromagnetic radiations ((Type , Energy(eV), Frequency(Hz) and Wavelength(cm))).	e 7			
1b- Calculate the shift in wavelength of an X-ray of wavelength $0.400X10^{-10}~{\rm m}$ that undergoes a 90 $^{\rm O}$ Compton scattering from an electron.	7			
1c- Define the following with examples :				
Nuclide - Radionuclides - Isotopes - Isotones - Isotones - Isobars - Isomers	7			
1d- Derive the law of radioactivity.	7			
2a- What are the properties of alpha decay.	7			
2b- Differentiate between negative electron emission decay and electron capture. 7				
2c- Illustrate Compton scattering and Photoelectric effect. Write short notes on				
each type?	7			
2d- Give the meaning of linear energy transfer LET and range.				
Calculate the energy in MeV of alpha particles with mean range of 5 cm in air at NTP.	7			
3a-A photon beam passes normal to a 20 mm sheet and is attenuated to half its origin intensity. The sheet is now rotated through an angle of 40 $^{\rm O}$. Find the intensity of the beam as it now emerges from the sheet .				
3b- Define the following: Radiation Absorbed Dose , Dose equivalent ,				
Half Value Layer and mass attenuation coefficient	7			
3c- Discuss with figure the direct and indirect action of radiation on DNA.	7			
3d- Write on : Cell line Cell differentiation DNA polymerase and ligase	6			

Dr. Ahmed Abu El-Ela

Best wishes:

المستوس الماكوام في الماكوام ف

Mansoura University
Faculty of Science
Department of Physics
Course Code: Phys. 311
Title: Solid State Physics

First Semester (Jan. 2015) Exam Type (Final): 3rd Year (Physics, Biophysics)

Time: Two Hours Full Mark: 80 Mark

Answer only three questions from the following

- 1- a: Density of FCC copper is 8.96 g/cm^3 and its atomic mass is 63.54 g/atom. Find the Bragg angle for the first order reflection from the planes (110) at $\lambda = 0.5 \text{ Å}$. Will there be any higher order reflections?
 - **b:** Derive a relation for the separation distance between planes in a crystalline structure. Is that relation valid for all types of lattices? [13 Mark]
- **2- a:** The energy of interaction of two atoms a distance r apart can be written as: $U(r) = -(a/r) + (b/r^7)$ where a and b are constants.
 - (i) Show that for the particles to be in equilibrium, $r = r_0 = (7b/a)^{1/6}$.
 - (*ii*) In stable equilibrium, show that the energy of attraction is seven times that of the repulsion in contrast to the forces of attraction and repulsion being equal. [14 Mark]
 - **b:** Which type of cubic lattice has the highest packing density? Give a proof. [13 Mark]
- 3- a: Describe an experimental method for determination of the separation distance between planes in a crystalline structure. [14 Mark]
 - **b:** Can gamma rays be used to study the crystalline structure? Explain! [13 Mark]
- 4- a: Show that the bulk properties of a solid does not depend on its volume . [14 Mark]
 - **b:** Write down the atomic radii r in terms of the lattice constant a, for:
 - (i) Simple cubic structure, (ii) FCC structure, (iii) BCC structure. [13 Mark]

أطيب التمنيات: أ.د. حمدى دويدار المينات: أ.د. حمدى دويدار المينات: أ.د. حمدى دويدار المينات: أ.د. حمدى دويدار المينات: أ.د. حمدى دويدار - أ.د. حمدى دويدار - أ.د. حمدى دويرار - د. كسير برر المينات فيزياد حموله)