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Answer the following questions : Total : (Marks).

[1] a) Let M and N be ideals of a ring R, show that :
i) M+N={m+n/meM,neN} isan ideal of R.
ii) M(N is an ideal of R.
iii) M+N/N =M/MAN.
b) Find the characteristic of the rings : Z3xZ74,2x7,Zg.

[2] a) Show that A factor ring R/N, N is an ideal of R is a belain iff
rs—sreN Vr,seR.

b) A Sylow p-subgroup of a finite group G is normal iff it is unique.
¢) the set of all units in a ring R with unity is a group under the
multiplication in R.

[3]a) State Sylow's Theorem's : Show that there are no simple group of order
2 3585.
b) Describe the field of quotient of the domain Z[N2]={a++/2b |a,be Z}

¢) Find the units and zero divisors of the rings : Z, xZ3 , Z[i], Z.

4 Mark each of the following true or false.

1) Every finite abelian group has exactly one Sylow p- sub group for each
prime p dividng the order of G.

2) Any two Sylow p-subgroups of a finite group are conjugate.

3) Every ring with unity has at least two units.

4) R=C (as fields)

5) Moy (Z5) is an integral domain.

6) If R is a nonzero ring without zero divisors, then ch(R) is either zero or a
prime p.

7) Every field has no nontrivial proper ideals.

8) nZ has zero divisors if n is not prime.
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Answer the following questions:v

1- Let (X, <) be a topological space, 4, Bc X.
(a) Prove that(X, <) is T~ space iff {x} is closed set, V x € X.

(b) Prove that A is closed set iff A cA.

2- (a) Let (X, P) be the particular topological space and Ac X .
Find 474" 4,b(4)

(b) Prove that Ais opensetiff Vx € A3 G € + such that
x € GCA.

3- (a) Prove that (ANB)° =A°N B".

(b) Prove that the axiom T, is a topological property.

4- (a) Let (X,r)and (X,-) be two topological spaces and
f:X—>Y be an onto continuous mapping. Show that the image
of every dense set in X is a dense setinV.

(b) Show that the co-finite topological space is T~ space but
not T,— space.

With Best Wishes
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=

Math. Dept. S Date 12 /1/2015

3" year (Stat. & Comp. Sci. and Math.)
Subject : Probability Theory (Math. 331)

Answer the following questions: (80 Marks)

1) a-If X, and X, are independent and identically distributed according to

-x;

T (x,-)={f) 2";(’)’ i =1,2.

Find (i) the probability density function of Z =In X, and P(X, <X,). (10 M.)
ii- If X, and X, are independent exponential random variables with (10 M.)
[y, (x,)=2e7 forx, > 0,i =1,2. Find the probability distribution of ¥ =X ,/.X,.

b- If the joint probability function of X and Y is given by

3 e™e”/y 0<x<w,0<y<wo
f(xay)—{o oW .
Find the conditional expectation E(Y|X=1). (10 M)

2) a- A random variable X has the discrete uniform distribution
f@)=1/m,x =1,2,...,m. (i) Show that the moment generating function is

M, (t)=e'(1-e™)/m(-e"). (ii) Find the mean and variance of X. (15M.)
b-If X is a random variable with finit mean x and variance o, then for any

2
value k>0, prove that P {|X - 4| 2k}s—27. (10 M.)
3) a- For any random variable X, prove that
E(X)=[P(X >x)d~ j PX <—x)dx . (10 M)
0 0 ‘
b- Let X be a Poisson random variables with parameter A . (10M.)

Find i - the characteristic function of X . 1ii- o, the skewness.
oIf x, X, ,..., X, are independent exponential random variables with

parameter A. Find the characteristic functionof ¥ =3 X, . M)

i=1

Best wishes. Prof. Beih El-Desouky
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Answer ALL questions. Show ALL vour work. ALL questions carry equal marks.

QUESTION (1): () Prove: (i) AV =VA (i) V=AE =Bla=1-E71 i) u=1+%82.

(.(Qr_

f@

2

3
(b) Evaluate A (x) 4 ifh=2. (c) Express g(x)= 3x3 —2x% +7x — 6 in the form _}:Oaj ()()3_j .
J:

(d) Use the Horner's method to evaluate f (-1) and {'(-1) for the polynomial f(x) given by:

3 2

fx) = x> +6x% +11x> +11x% +6x +1.

QUESTION (2): (a) Formulate the truncation error, Ey (x) of the general interpolating polynomial.

by using the Gauss-Jordan (G-J) method. Also find the

AN W =

11
(b) Find the inverse of the matrix A= |1 2
13

1 2

1
LU factorization of its sub-matrix S= { }

(¢) Consider B = . Compute det (B) by applying the DETGTRI algorithm, then find all values of

o
e\ I
N = O

p and q for which: (i) B is singular. (ii) B is strictly diagonally dominant. (iii) B is positive definite.

d) The equation x3 —6x —11= 0 has a root between 3 and 4 . By using inverse interpolation, find this root.
, . P

QUESTION (3); (&) Solve up —2u_ ;+u__, =0 giventhat u_; =0,and ugy=1.

(b) Prove that the Newton forward interpolating polynomial passing through the (n+1) data points (xi , yi) .

X=X n (s ) .
i=0,1,2,....,n such that Ky =Ky gy B h= is given by P(x) = X -—-A1y0
S i=0
x=4.0
(c) Find y'(1.5) and evaluate [ y dx by applying the Simpson's rule from the following data:
x=24 B
X 1.5 2.0 2.5 3.0 3.5 4.0

y(x) | 3.375 | 7.000 | 13.625 | 24.000 | 38.875 | 59.000

(d) Solve the following linear system of equations by applying the Gauss-Seidel (G-S) method.
—4x1 =X, +1Ox3 =24, 10x1 +3x2 +2x3 =22 5 - X +10x2 +Xy = 27,

Kind regards Examiner: Prof. Dr. Moawwad El-Mikkawy
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~ Answer the following questions

Question-1 (22 marks) : 5 % nth

1. Define the algebra of sets, the outer measure on an algebra Q, the
measurable set and the measurable function

2. Prove that if Q is an algebra of sets and - A eQ then 4° €Q
and any ring with this property is also algebra
3. Prove that the set of all rational numbers is countable

Question-2 (21 marks)

. ’ .- 4
1. Prove thatIf ' (A)=0 then £ (AUB)=pu (B)
2. Prove that the family of measurable sets is an algebra -
3. Prove thatif 4 (E) =0, then E is measurable

Question-3 (19 marks) . ,
1. Prove that every continuous function is measurable

2. Prove thatif / and g are measurable on a set E then so are kf,f2
~and mim(f, g)

Question-4 (18 marks)

- . £ 1 1
1. Find the length of theset | | x:—— <x<—
‘ ’ k=1 k+1 k

2. Show that the function -
| 1, x is a rational number in[0,1]
()= {0, x is anirrational number in[0,1]
Is not Riemann integrable in [0,1]

2. calculate Lebesgue integral for the flinctiOn f(x) ‘
%) 1, x is a rational numberin|a,b]
X)= '

2, x isan irrational numberin|a,b]




