امتحان دور يناير 2015 م برنامج: احصاء و علوم الحاسب

المستوى: الثالث

اسم المقرر: نظرية احصائية (1)

كود المادة: ر 333

جامعة المنصورة - كلية العلوم قسم الرياضيات

التاريخ: 25 / 12 / 2014 م

الدرجة الكلية: 80 درجة

الزمن: ساعتان

أجب عن الأسئلة الآتية:-

السؤال الأول: أ) أخذت عينة عشوائية مكونة من 400 فرد من إحدى المدن فوجد أن المدخنين منهم 100 فرد . أوجد % 95 فترة ثقة لنسبة المدخنين بتلك المدينة .

ب) لمعرفة تأثير دواء على قراءات ضغط الدم المرتفع. أخذت لذلك عينة عشوائية مكونة من 9 أشخاص و قيس ضغط كل منهم قبل تعاطى ذلك الدواء و بعد تعاطيه لمدة أسبوع فكانت النتائج كالتالى:

القراءة قبل تعاطى الدواء	170	180	160	175	150	180	185	190	195
القراءة بعد تعاطى الدواء	163	168	149	163	142	168	177	179	186

احسب % 95 فترة ثقة لمتوسط الانخفاض في قراءة ضغط الدم الذي ينتج من استخدام هذا الدواء $S^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2$ معلوم . أثبت أن المقدر $X_i = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2$ مقدر كاف لتباين التوزيع الطبيعي G^2 مقدر كاف لتباين التوزيع الطبيعي G^2 (بالسنين) التي تنتجها احدي الشركات يتبع توزيعا" احتماليا" دالة كثافته G^2 من المتابيح الكهربائية G^2 (بالسنين) التي تنتجها احدي الشركات يتبع توزيعا" احتماليا" دالة كثافته G^2 من المتابيع الكهربائية G^2 (بالسنين) التي تنتجها احدي الشركات يتبع توزيعا" احتماليا" دالة كثافته المتابيع المتابع المتاب

الاحتمالية هي $1 \le x \le 1$; $0 \le x \le 1$ إذا أخذنا عينة عشوائية مكونة من 64 مصباح فما الاحتمالية هي $1 \le x \le 1$ ثمير احتمال أن يكون متوسط أعمارها أقل من $\frac{1}{2}$ شهر

ب) احسب حجم العينة اللازم سحبها من مجتمع حجمه 20000 لتقدير المتوسط لظاهرة معينة بخطأ لا يتعدى 2 بدرجة ثقة % 99 بفرض أن تباين تلك الظاهرة في المجتمع 16

ج) أوجد مقدر الإمكان الأكبر لنسبة النجاح P في توزيع ذو الحدين إذا سحبنا عينة عشوائية حجمها n و رمزنا لعدد مرات النجاح بها بX

 $Z_{0.005}=2.58\,,\quad Z_{0.025}=1.96\,,\quad \Phi\left(1\,\right)=0.8413\,,\quad t_{(\,0.025\,,\,9)}=2.262\,,\quad t_{(\,0.025\,,\,8)}=2.30622$ مع التمنيات بالنجاح د. فاتن شيحه

MI, o well ale - chipt-cionos-11

Final Exam- Semester I - Year 2014/2015

SUBJECT: Measure Theory

(MATH 311)

Level-3

Faculty of Science Mathematics Department DATE: 29 / 12 /2014

FULL MARK: 80

ALLOWED TIME: 2Hours

Answer the following questions

Question-1 (22 marks)

- 1. Define the algebra of sets, the outer measure on an algebra Ω , the measurable set and the measurable function
- 2. Prove that if Ω is an algebra of sets and $A \in \Omega$ then $A^c \in \Omega$ and any ring with this property is also algebra
- 3. Prove that the set of all rational numbers is countable

Question-2 (21 marks)

- 1. Prove that If $\mu^*(A) = 0$ then $\mu^*(A \cup B) = \mu^*(B)$
- 2. Prove that the family of measurable sets is an algebra
- 3. Prove that if $\mu'(E) = 0$, then E is measurable

Question-3 (19 marks)

- 1. Prove that every continuous function is measurable
- 2. Prove that if f and g are measurable on a set E then so are kf, f^2 and mim(f,g)

Question-4 (18 marks)

- 1. Find the length of the set $\bigcup_{k=1}^{\infty} \left\{ x : \frac{1}{k+1} \le x < \frac{1}{k} \right\}$
- 2. Show that the function

$$f(x) = \begin{cases} 1, & x \text{ is a rational number in } [0,1] \\ 0, & x \text{ is an irrational number in } [0,1] \end{cases}$$

Is not Riemann integrable in [0,1]

2. calculate Lebesgue integral for the function f(x)

$$f(x) = \begin{cases} 1, & x \text{ is a rational number in } [a, b] \\ 2, & x \text{ is an irrational number in } [a, b] \end{cases}$$

Mansoura University, Faculty of Science, Mathematics Department

Math 313 for third year students First term final exam –January, 2015

Time: 2 hours

يسمح باستخدام الآلة الحاسبة

Answer ALL questions. Show ALL your work. ALL questions carry equal marks.

QUESTION (1): (a) Prove: (i) $\Delta \nabla = \nabla \Delta$ (ii) $\nabla = \Delta E^{-1} = E^{-1} \Delta = 1 - E^{-1}$ (iii) $\mu = 1 + \frac{1}{4} \delta^2$.

(b) Evaluate $\Delta^4(x)_4$, if h = 2. (c) Express $g(x) = 3x^3 - 2x^2 + 7x - 6$ in the form $\sum_{i=0}^{3} a_i(x)_{3-i}$.

(d) Use the Horner's method to evaluate f(-1) and f'(-1) for the polynomial f(x) given by:

$$f(x) = x^5 + 6x^4 + 11x^3 + 11x^2 + 6x + 1$$
.

QUESTION (2): (a) Formulate the truncation error, $E_n(x)$ of the general interpolating polynomial.

(b) Find the inverse of the matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{bmatrix}$ by using the Gauss-Jordan (G-J) method. Also find the

LU factorization of its sub-matrix $S = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$.

(c) Consider $B = \begin{bmatrix} p & 1 & 0 \\ q & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix}$. Compute det (B) by applying the DETGTRI algorithm, then find all values of

p and q for which: (i) B is singular. (ii) B is strictly diagonally dominant. (iii) B is positive definite.

(d) The equation $x^3 - 6x - 11 = 0$ has a root between 3 and 4. By using inverse interpolation, find this root.

QUESTION (3): (a) Solve $u_n - 2u_{n-1} + u_{n-2} = 0$ given that $u_{-1} = 0$, and $u_0 = 1$.

(b) Prove that the Newton forward interpolating polynomial passing through the (n+1) data points (x_i, y_i) ,

i = 0, 1, 2, ..., n such that $x_i - x_{i-1} = h = \frac{x - x_0}{s}$ is given by $P(x) = \sum_{i=0}^{n} \frac{(s)_i}{i!} \Delta^i y_0$.

(c) Find y'(1.5) and evaluate $\int_{x=2.0}^{x=4.0} y \, dx$ by applying the Simpson's rule from the following data:

X	1.5	2.0	2.5	3.0	3.5	4.0
y(x)	3.375	7.000	13.625	24.000	38.875	59.000

(d) Solve the following linear system of equations by applying the Gauss-Seidel (G-S) method.

$$-4x_1 - x_2 + 10x_3 = 24$$
, $10x_1 + 3x_2 + 2x_3 = 22$, $-x_1 + 10x_2 + x_3 = 22$.

Mansoura Univ. Faculty of Science

3rdYear: math.

Mathematics Dept.

Date Jan.201

Subject:Math.

Discrete math R 347

Time:2 hours

Answer the following

1] i- Use Euclid division algorithm to find gcd(114,18) Write a program for this algorithm.

ii- State fundamental theorem of arithmetic. Use it to prove that log 20 for the base 3 is noninteger. [27 marks]

2] i- Use Chinese remainder theorem to solve $x=1 \mod 3$, $x=2 \mod 4$.

ii-Use public key cryptography to send the word "gas".. [27 marks]

3]i- Define NP complete problem. Solve the following TSP [*564, 3*45, 98*3, 969*]

ii- Solve $x=2 \mod 3$, $x=2 \mod 6$.

[26 marks]

المستون الاحار على المستوركة المستورة المال (١٤١)

Mansoura University

Faculty of Science

Structured Programming Final Term Exam 1 January 2015 Time: 2 Hours

Question₁

- (1) Write a code segment that read four degrees from the user and display their total and minimum degree. (7 Points)
- (2) Rewrite the above code segment to work with any number of degrees specified by the user without using array. (8 Points)
- (3) Rewrite the above code segment to work with any number of degrees specified by the user using array. (8 Points)
- (4) Suppose that the values of degree are 80, 70, 90 and 60, Trace your above answer. (7 Points)

Question₂

(1) Draw a flowchart and Write a code segment that prints the following.

(10 Points)

1	15	110
2	25	210
3	35	310
4	45	410
5	55	510

(2) Write a program to search for a specific value inside an array of n values accepted from the user. The program calls a method that return true if the required element exists within the array, otherwise return false. (10 Points)

Question₃. Write the output of the following code segment. (10 Points)
(1)

int
$$x = 2$$
, $y = 3$, $z = 4$, $m = 3$, n ; $n = x-- + --z * y-- >> m$; if $(n > 1)$ Console.WriteLine("Final"); else Console.WriteLine("Exam");

(2)

$$int x = 2$$
, $z = 4$, $m = 2$, n ;
 $n = x++*-z - x << ++m$;
for (int indx = n; indx >10; indx /=2)
Console.WriteLine("Final Exam");

Good Luck

MEC/ Children is is in the many in

Mansoura University Faculty of Science

Mathematics Department Statistics and Computer Science

Database System
Term Exam
Thu: 22nd Jan, 2015
Dr. Bahaa Shabana

Answer the following questions.

1. Write short note for each of the following:

{10 marks}

- 1.1. Atomic domain.
- 1.2. Derived attribute.
- 1.3. Entity set.
- 1.4. Foreign key.
- 1.5. Metadata.

- 1.6. Primary key.
- 1.7. Referential integrity.
- 1.8. Transaction.
- 1.9. Trigger.
- 1.10. Weak entity.

2. Question Two

{12 marks}

- 2.1. List the significant differences between a file-processing system and DBMS.
- 2.2. Define the concept of aggregation. Give two examples of where this concept is useful.
- 2.3. What is the degree of relationship set? Show example(s) using E-R model.

3. Question Three

{10 marks}

Use the E-R diagram and answer the following:

- 3.1. List the entity sets and their primary keys.
- 3.2. Design a relational database corresponding to the E-R diagram.

(Please, see next page)

4. Question Four

{16 marks}

Consider the employee database of opposite figure, where the primary keys are underlined.

employee (person-name, street, city)
works (person-name, company-name, salary)
company (company-name, city)
manages (person-name, manager-name)

Give an expression in SQL

for each of the following queries:

- 4.1. Find the names of all employees who work for First Bank Corporation.
- 4.2. Find the names and cities of residence of all employees who work for First Bank Corporation.
- 4.3. Find the names, street addresses, and cities of residence of all employees who work for First Bank Corporation and earn more than \$10,000.
- 4.4. Find all employees in the database who do not work for First Bank Corporation.
- 4.5. Find all employees in the database who earn more than each employee of Small Bank Corporation.
- 4.6. Find all employees who earn more than the average salary of all employees of their company.
- 4.7. Find the company that has the most employees.
- 4.8. Find the company that has the smallest payroll.

5. Question Five

{12 marks}

- 5.1. Define the normalization. What is the main goal of database normalization?
- 5.2. Apply the normalization forms of the un-normalized table.

Student#	Advisor#	Advisor	Adv-Room	Class1	Class2	Class3
1022	10	Susan Jones	412	101-07	143-01	159-02
4123	12	Anne Smith	216	101-07	159-02	214-01

(End of Questions)

Good Luck

Dr. Bahaa Shabana

Page 2 of 2