٣ فيزياء - صور صفته في ١٦٦ Mansoura University Faculty of Science Physics Department. Subject: Physics(316) Title: Advanced optics Final term exam – First Term Third level /physics Date: Jan. 2014 Allowed Time: Two hours. Full Mark: 80 ## Answer the following questions - [1] a- Discuss Raman scattering theory in a classical frame work? [15]Mark b- Explain, giving both theory and experimental details, how you would produce elliptically and circular polarized light? [15]Mark - [2] a-Calculate the electric field at a large distance from a thin glass plate if a source of light is placed at a large distance from its opposite side? [15] Mark - b- Write briefly about the quarter wave plate? Calculate the thickness required for a quarter wave plate having n_o = 1.768 and n_E = 1.760 using light of wavelength λ = 5893 Å. [10] Mark - [3] a- Derive Rayleigh equation for elastic light scattering by isolated small particle in vacuum illuminated by plane polarized light? [15] Mark - b- Describe the anomalous dispersion phenomenon using Sellmeier mechanism (clarify your answer with suitable drawing)? [10] Mark Best wishes: Prof. Dr. Kermal El-Farahaty Mansoura University Faculty of Science Department of Physics Course Code: Phys. 311 Title: Solid State Physics First Semester (Jan. 2015) Exam Type (Final): 3rd Year (Physics, Biophysics) Time: Two Hours Full Mark: 80 Mark ### Answer only three questions from the following - 1- a: Density of FCC copper is 8.96 g/cm^3 and its atomic mass is 63.54 g/atom. Find the Bragg angle for the first order reflection from the planes (110) at $\lambda = 0.5 \text{ Å}$. Will there be any higher order reflections? [14 Mark] - **b:** Derive a relation for the separation distance between planes in a crystalline structure. Is that relation valid for all types of lattices? [13 Mark] - **2- a:** The energy of interaction of two atoms a distance r apart can be written as: $U(r) = -(a/r) + (b/r^7)$ where a and b are constants. - (i) Show that for the particles to be in equilibrium, $r = r_0 = (7b/a)^{1/6}$. - (ii) In stable equilibrium, show that the energy of attraction is seven times that of the repulsion in contrast to the forces of attraction and repulsion being equal. [14 Mark] - **b**: Which type of cubic lattice has the highest packing density? Give a proof. [13 Mark] - 3- a: Describe an experimental method for determination of the separation distance between planes in a crystalline structure. [14 Mark] - **b:** Can gamma rays be used to study the crystalline structure? Explain! [13 Mark] - 4- a: Show that the bulk properties of a solid does not depend on its volume. [14 Mark] - **b:** Write down the atomic radii *r* in terms of the lattice constant *a*, for: - (i) Simple cubic structure, (ii) FCC structure, (iii) BCC structure. [13 Mark] أطيب التمنيات: أ.د. حمدی دويدار (مُعبرُ وَيرُ الرَّمِرُ وَي الدَّ الدَّمِرُ وَي الدَّ الدَّمِرُ وَي الدَّمِرُ وَي الدَّمِرُ وَي الدَّمِرُ وَي الدَّالِ الدَّالِي الدَّالِي الدَّالِ الدَّالِي الْمُعْلِي Mansoura University **Faculty of Science Physics Department** Course code: ph 312 3rd level Physics Students Full Mark: 80 Allowed time: 2 hours Course title: Theo. React. Physics First semester 2014-2015 Date: 29-12-2014 # Answer the following questions: | 1-A-Define the following quantity: | 8 | |---|---------------| | i- The reactor ii- The cross section of an event iii- The neutron angular | density | | iv- The reaction rate v- The scattering angle. (10 Mark) | | | 1-B- Derive the neutron transport equation in term of the angular density | (10Mark) | | 2-Write short notes about the nuclear reactors, and take an example of the | reactors to | | show how obtained the electricity. | (20 Mark) | | 3-a- Using the Fick's rule to derive the diffusion equation | (15 Mark) | | 3-b- Show the relation between the mean free path and the macroscopic cro | ss section. | | | (5 mark) | | 4- Consider a homogeneous bare slab reactor with inner width 2a, and oute | er width 2b. | | Calculate the eigen values of the one speed transport equation, and Criticali | ty factor for | | the emitting neutrons. | (20 Mark) | ### Best wishes: Prof. Dr. S. A. El-Wakil & Dr. Abeer Awad Mansoura University Faculty of Science PHYSICS DEPARTMENT Final Exam - 1st Term (1 Jan. 2014) **Third Level Students** (Special Physics) Course: Math. Physics 1 (Phy315) Time allowed: 2 hours Full Mark: 80 (Every question: 20 Mark) ## Answer the following questions Q1: A) Estimate the following integrals by using Gamma and Beta functions: i) $$\int_{0}^{\pi} \tan^{5/2}(x/2) dx$$ ii) $$\int_0^1 \sqrt{\frac{1}{x} - 1} \ dx$$ ii) $$\int_0^1 \sqrt{\frac{1}{x} - 1} dx$$ iii) $\int_0^\infty \exp\left(-\frac{x^2}{4}\right) dx$ B) Prove the relation between Beta and Gamma functions as: $B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$ Q2: A) Prove Rodrigues formula of the Legendre Polynomials as: $P_n(\mu) = \frac{1}{2^n n!} \frac{d^n}{d\mu^n} (\mu^2 - 1)^n$ i) $$\int_{-1}^{1} x P_n(x) P_{n-1}(x) dx = \frac{2n}{4n^2 - 1}$$ ii) $P_3(x) = \frac{1}{2} (5x^3 - 3x)$ ii) $$P_3(x) = \frac{1}{2}(5x^3 - 3x)$$ O3: A) Prove that the generating function of the Bessel functions $J_n(x)$ can be expressed as: $$\exp\left[\frac{x}{2}\left(t - \frac{1}{t}\right)\right] = \sum_{n = -\infty}^{\infty} t^n J_n(x)$$ **B**) i) Show that: $$\int$$ $$\int_0^\infty e^{-x} J_0(x) dx = 1$$ ii) Evaluate $$\int_{-\infty}^{\infty} x e^{-x^2} H_i(x) H_j(x) dx$$ 04: A) What is the relation between Weber-Hermite function $\Psi_n(x)$ and Hermite function $H_n(x)$? Explain how can you obtain the expression of Weber-Hermite function in terms of Hermite function and solve the corresponding Weber-Hermite differential equation. B) For Laguerre polynomial functions $L_n(x)$, prove its orthogonality property as $$\int_0^\infty e^{-x} L_n(x) L_m(x) dx = \delta_{nm}$$ With my best wishes Dr. M. Sallah Mansoura University Faculty of Science Physics Department First Term Examination, Third Year: Physics, 313 Date: 2/1/2015 Time: 2 hours Course (s): Methods of Experimental Physics Full Mark: 80 Mark ### **Answer the Following Questions** [1] a- Describe the working of a rotary oil pump for producing law pressures. [10 Marks] b- Calculate the root mean square velocity (r.m.s) velocity of the nitrogen molecules at 0 °C. the density of nitrogen at N.T.P is 1.25 g/cm³ and g=981 cm/s². [10 Marks] c- Discuss the factors usually considered for the selection and choice a pump. [10 Marks] ### [2] Account on the following: i- The quartz spectrograph. [10 Marks] ii- Flame photometer as a tool in spectrum analysis. [10 Marks] iii- Photographic process. [5 Marks] #### [3] Account on the following: i- Light losses in spectrographs. [10 Marks] ii- Fogging produced in the photographic plates. [10 Marks] iii- Give some examples for systematic errors and random errors. [5 Marks] #### With best wishes أ.د. المتولى عبد الرازق 8 أ.د . إبراهيم فوده Mansoura University **Faculty of Science Physics Department** Course: Phys. 314 Quantum Mechanics First Term Exam. Jan. 2015 3rd year Phys. and Bio-phys. Allowed Time: 2 hours Full Mark: 80 # **Answer the following questions:** [1-a] Write on the basic postulates of quantum mechanics. [5 Marks] [1-b] A beam of mono-energetic particles of energy E moves freely in x-direction is subjected to a potential jump of height V_0 <E. Determine the reflection and transmission coefficients of the beam and compare the results with those calculated classically. [15 Marks] [2-a] Using the time-independent perturbation theory to estimate the first order corrections on the energy eigen-values and their corresponding eigen-functions of a particle moves in a perturbed system. [12 Marks] [2-b] Verify that $[x^2, P_x] = 2ihx$, and calculate [E,t]. [8 Marks] [3-a] Solve the one-dimensional Schrodinger equation to determine the allowed energy levels of a particle moves freely inside an infinite potential well of width L. [12 Marks] [3-b] If this potential is perturbed by $\mathbf{H'}=V_0$ in the region 0 < x < L/2, calculate the 1st order correction on the ground state energy of the particle. [8 Marks] [4-a] Determine the allowed energy levels and the corresponding eigen functions of a one-dimensional harmonic oscillator. [15 Marks] [4-b] Discuss the degeneracy of a spherical harmonic oscillator and calculate its value for the 2nd excited state energy level (N=2). [5 Marks] ## WITH OUR BEST WISHES Examiners: Prof. Dr. A. R. Degheidy and Dr. E. B.Elkenany Mansoura University Faculty of Science Physics Department First Semester "Jan.2015" Metal Physics Exam – Phys-317 Third Level Physics "Group 1" - Total Mark [80] Time Allowed TWO HOURS ANSWER THE FOLLOWING QUESTIONS: Q.1: A Copper wire of cross –sectional area 3×10^{-6} m²carries a current 10 A. Find the drift velocity of electrons in this metal wire. The density of copper is 8.95 g/cm^3 , the atomic weight is 63.5 g/mole. Estimate the average time between collisions for electrons in copper at 20°C , where the resistivity of copper is $1.7 \times 10^{-8}\text{Ohm-m.Compute}$ the average electron energy in a metal at zero Kelvin. Avogadro's number, 6.02×10^{-23} , electron mass, $9.109 \times 10^{-31}\text{Kg}$, Planck's constant $6.63 \times 10^{-34}\text{Js}$, electron charge = $1.602 \times 10^{-19}\text{Coul.}$, 1eV - $1.602 \times 10^{-19}\text{J}$, 1Cal=4.2 J, Copper is monovalent. [20Mark] Q.2 : Give possible reasons why Trivalent and Quadrivalent are metallic in character, and why metal crystallize typically in one of three structures, namely: BCC, FCC, and HCP structure?. [20Mark]. Q.3: (a): Explain why electrons make only small contributions to the specific heat of a metal? [10Mark]. (b): The element sodium has density 0.97 x 10^3 Kgm⁻³, relative atomic mass 23 and electrical conductivity 2.1x107 Ohm⁻¹.m⁻¹. Determine (i) the thermal conductivity at 20° C of the element sodium by knowing that the numerical value of Lorenz number is $5.2x10^{-9}$ cal.ohm/s.deg²and (ii) the mobility of electrons [10Mark]. Q.4 (a): Explain the meaning of the phase transformations in metals and illustrate your answer with examples. [10Mark]. (b): Consider a cube of gold 1mm on an edge. Calculate the approximate number of conduction electrons in this cube whose energies lie in the range 4.000 eV to 4.025 eV. [10Mark]. Prof.Dr. Mustafa Kamal. انتهت الأسئلة: Mansoura University Faculty of Science Physics Department Subject: Physics First Term Third Year: Physics Date: 5-1-2014. Time allowed: 2 hours Course (s): Phys 310 (Statistical Thermodynamics) Full Mark: 80 Mark Answer the following Questions: Each Question [20] Mark [1] Deduce the Maxwellian distribution for molecular velocities. [2] Find: a) Plank's law of black body radiation and b) Maxwell- Boltzmann velocity distribution Using Bose-Einstein distribution functions. [3] Derive the distribution function of Fermi – Dirac statistics. [4.a] A system consists of two particles. Suppose that the system has two energy level, where $\epsilon_1=0$, $\epsilon_2=\epsilon$, $g_1=g_2=1$. Calculate the partition function for - (a) a single particle - (b) two particles (distinguishable) - (c) two particles (indistinguishable) [4.b] Derive the energy distribution of molecular speed With my best wishes Prof. Dr. A. Elgarayhi Examiners: 1. Prof. Dr. A. Elgarayhi 2. Dr. M. Mansour