| El-Mansoura- Egypt                           | 4 <sup>th</sup> level of Math. Prog. and Statis. and comp. Sc.           | مصر- المنصورة                  |  |
|----------------------------------------------|--------------------------------------------------------------------------|--------------------------------|--|
| Mansoura University Faculty of Science       | Program: M.Sc. (Statistics and Computer Science) Subject: Lattice Theory | جامعة المنصورة<br>كلية العلوم  |  |
| Mathematics Department First Term: Des. 2014 |                                                                          | قسم الرياضيات<br>Time: 2 hours |  |

### Answer the following five questions:

1- Give two distinct equivalent definitions of meet semilattices, one as a poset and the other as an algebra. (10 points)

And then give an example of each of:

(each item 2 points)

- 1- A partially ordered set (poset) but not a lattice.
- 2- A non- modular lattice with 6 elements.
- 3- A poset has more than one maximal element.
- 4- A distributive lattice having more than 4 elements.
- 5- An  $\leq$  homomorphism between two lattices but not  $\vee$  homomorphism.
- 2- a- Let N be the set of natural numbers. Prove that  $(N; \leq)$  is a lattice

where  $\leq$  defined by  $x \leq y :\Leftrightarrow x \mid y$ . (Hint: determine the GLB(x, y) and the LUB(x, y) for each x,  $y \in N$ ). Also, let  $N_{18}$  be the set of

all devisors of 18, then give Hass Diagram of the lattice  $(N_{18}, \leq)$ . (10 points)

b- Find all posets with 4-element set and determine,

which one is a meet-simelattice, a join-simelattice, or a lattice.

(5 points)

c- In a lattice  $(L, \vee, \wedge)$  prove that:

If  $a_1 \le b_1 \& a_2 \le b_2 \Rightarrow a_1 \land a_2 \le b_1 \land b_2$ .

(5 points)

3- a- Give two equivalent definitions of a ∨-ideal of a lattice

 $L = (L; \vee, \wedge)$  and prove the equivalence between them.

(10 points)

- b Define a congruence relation  $\theta$  on a lattice  $L = (L; \vee, \wedge)$ . (10 points) And show that each congruence class  $[a]\theta$  is a convex sublattice.
- 4- a- Let a, x, y be any three elements in a lattice  $L = (L; \vee, \wedge)$ . (10 points) Prove that:

L is distributive  $\Leftrightarrow$  "  $a \land x = a \land y \& a \lor x = a \lor y \Rightarrow x = y$ ".

b- Let  $(L, \vee, \wedge)$  be a lattice. Prove that:

 $(L, \vee, \wedge)$  is not modular lattice  $\Leftrightarrow \mathbb{N}_5$  is a sublattice of  $(L, \vee, \wedge)$  (10 points)

Examiner: Dr. Magdi H. Armanious

Full Mark: 80 points

دور: يناير 2015 الزمن : ساعتان التاريخ : 30 /2014/12



الفرقة: المستوى الرابع المادة: هندسة تفاضلية كود المادة: ر416 البرنامج: رياضيات

#### Answer the following questions:

#### Full mark: 80

- 1-a) Define: the regular curve, the arc-length function and show that the curve  $\alpha(\theta)=(1+\cos\theta)$ ,  $\sin\theta$ ,  $2\sin\frac{\theta}{2}$  is regular and lies on a sphere centered at the origin with radius 2 and find its speed and the velocity vector
  - b) Deduce the expression of the second fundamental form II of a surface and prove that II of a plane is zero.
- 2-a) For a space curve  $\alpha(s)$ , define B, the torsion  $\tau$  and prove that  $\frac{dB}{ds}$  is parallel to N and find Frenet formulae.
  - b) Define the Gaussian curvature K and the normal curvature  $K_n$  of a regular surface. And find them for the surface  $r(\theta, \varphi) = ((b+a\sin\varphi)\cos\theta, (b+a\sin\varphi)\sin\theta, a\cos\varphi)$
- 3- a) Define T, N, the curvature k of a curve lpha(t) and show that

$$N = \frac{dT}{dt} / \left| \frac{dT}{dt} \right| , K = \frac{\left| \dot{\alpha} \times \ddot{\alpha} \right|}{\left| \dot{\alpha} \right|^3} .$$

- b) Define the regular surface S, the unit normal surface  $N^*$  and the tangent plane  $T_p(S)$ . Find the equation of  $T_p(S)$  for the surface  $z = \frac{1}{2} \left( x^2 + y^2 \right) \,, \quad \text{at p} = (1, -1, 1)$
- 4- a) Prove that the curve  $\alpha(t) = (e^t \cos t, e^t \sin t)$  is regular and find T, N for it.
  - b ) Compute the curvature  $\,k$  and the torsion  $\mathcal T\,$  of the curve

$$\alpha(t) = (\frac{4}{5}\cos t, 1-\sin t, -\frac{3}{5}\cos t).$$

Best wishes.

دور بنایر ۲۰۱۰ الزمن: ساعتان التاريخ: 22/1/2015



الفرقة: الرابعة الشعبة: ر+ح ص المادة: بحوث عمليات (ر ٢١١)

## Answer all questions:

### Question[1]

- a- Define:
  - (i) Convex set
- (ii) Convex function
- (iii) Convex linear programming

- (iv) Convex hull
- (v) Feasible solution
- (vi) Optimal feasible solution
- b- By using the graphical method solve the LPP:

Max Z=8x-4y such that:

(i)  $|x + y| \le 5$ 

(ii)  $|x-y| \leq 5$ 

- c- Consider the feasible region shown below:
  - (i) Determine the coordinates of vertex B.
  - (ii) Determine the coordinates of vertex A.
  - (iii) Write the system of linear inequalities that formed the feasible region (Fs)



(الدرجة ٢٠)

# Question[2]

- a- Let S be a nonempty convex set in R" and let  $f: S \longrightarrow R$  be a convex function. Then, prove that the level set  $S_{\alpha} = \{x \in S | f(x) \le \alpha\}$ ,  $\alpha$  is a real number, is a convex set?
- b- By using the simplex method solve the LPP:

 $Z=5x_1+4x_2$ 

such that:  $4x_1 + 5x_2 \le 10$ ,  $3x_1 + 2x_2 \le 9$ ,  $8x_1 + 3x_2 \le 12$ ,  $x_1, x_2 \ge 0$ 

c- Show that:  $f(x) = 3x + 4 \ \forall \ x \in X \subset \mathbb{R}^n$  is a convex function?

(الدرجة ٣٠)

(من فضلك اقلب الورقة)

# Question[3]

- a- True or false:
  - (i) The union of two convex sets is convex set.
  - (ii) If  $f: \mathbb{R}^n \longrightarrow \mathbb{R}$  be a concave function over a convex set S then  $\frac{1}{f(x)}$ , f < 0 is concave function.
  - (iii) The extreme points of the set  $\{(x,y): |x| \le 1, |y| \le 1\}$  are  $\{(1,-1),(1,1),(-1,1),(-1,-1)\}$
  - (iv) Minimize Z=-Maximize {-Z}
- b- Solve the following transportation problem using the North-West corner method:

|             | D1 | D2 | D3 | D4 | Availability |
|-------------|----|----|----|----|--------------|
| 01          | 6  | 4  | 1  | 5  | 14           |
| 02          | 8  | 9  | 2  | 7  | 16           |
| 03          | 4  | 3  | 6  | 2  | 5            |
| Requirement | 6  | 10 | 15 | 4  |              |

- c- Let  $S_1$  and  $S_2$  be convex sets in  $R^n$ . prove that:
  - (i)  $S_1 S_2$  is convex set
  - (ii)  $S_1 + S_2$  is convex set

(الدرجة ٣٠)

مع تمنياتي بالنجاح والتفوق د.محمد عبد الرحمن دور يناير ۲۰۱۵ الزمن: ساعتين التاريخ ۲۰۱۵/۱/۱۳



المستوى : الرابع

الشعبة: رياضيات

لمادة: زمر لى ر١٥٥

## Answer the following questions

[1] Define what we mean by G is a topological group. Prove that every abstract group S is a topological group. Put true or false " every topological group is a Lie group and every Lie Group is a topological group.

[2] Define what we mean by a topological manifold of dimension m. Prove that the graph of  $y = x^{2/3}$  in  $R^2$  is a topological manifold Prove that the cross in  $R^2$  is not a topological manifold.

[3] Define what we mean by G is a Lie group. Prove that  $S^1 = \{z \in \mathcal{C} : |Z| = 1\}$  is a Lie group. Prove that  $SY(2) = \{A \in GL(2,C); AA^{-t} = 1\}$  is a Lie Group.

[4] Define the algebraic structure between Lie Groups and Lie algebras If  $\gamma_x(t)$  is the one – parameter subgroup with tangent vector at 1 equal to x then  $\exp: g \to G$ , by  $\exp(x) = \gamma(1)$ .

find the corresponding algebraic structure

of 
$$G = R_1$$
  $g = R$ 

find the exp map of the lie group

$$G = S^{1} = R/Z = \{Z \in \mathcal{C} : |Z| = 1\}$$
$$Z = e^{2\pi i\theta}, \theta = R/Z$$

**Good Luck** 

Prof. A. S. Hegazi

# (211 1) adoler Or, led 26 - Chpl, E



Faculty of science Math-department.

theory of differential equations B.sc. Exam January 2015 Time: 2 H

Answer the following questions:

1-a) State and prove the theorem of dependence of solutions on slight change on the initial conditions .

b) Discuss the existence and uniqueness solution of the initial value problem  $\frac{dy}{dx} = y^2, y(1) = -1, R := \{ |x-1| \le a, |y+1| \le b \} . \text{ Give the solution } (10^{\text{marks}})$ 

2-a) Give the orthonormal functions of the boundary value problem,

$$\frac{d^2 y}{dx^2} + \lambda y = 0$$
 ,  $y(0) = 0$  ,  $y(\pi) = 0$  (12marks)

b) Prove that a necessary and sufficient condition that the differential equation  $a_0(t)\frac{d^2x}{dt^2} + a_1(t)\frac{dx}{dt} + a_2(t)x = 0 \text{ be a self-adjoin is that } \frac{da_{0(t)}}{dt} = a_{1(t)} \text{ on } I = [a,b]. \tag{8marks}$ 

3-a) If the vector functions 
$$\varphi_1$$
,  $\varphi_2$ , ....,  $\varphi_n$  defined by  $\varphi_1 = \begin{pmatrix} \varphi_{11} \\ \varphi_{21} \\ \vdots \\ \varphi_{nn} \end{pmatrix}$ ,  $\varphi_2 = \begin{pmatrix} \varphi_{12} \\ \varphi_{22} \\ \vdots \\ \varphi_{nn} \end{pmatrix}$ , ....  $\varphi_n = \begin{pmatrix} \varphi_{1n} \\ \varphi_{2n} \\ \vdots \\ \varphi_{nn} \end{pmatrix}$ 

are linearly <u>dependent</u> solutions of any H.L.V.D.E and  $c_1$ ,  $c_2$ ,...., $c_n$  are n costant on I = [a,b]. Prove that  $\varphi = c_1 \varphi_1 + \cdots + c_n \varphi_n$  is a solution of the H.L.V.D.E, and the Wronskian,  $W(\varphi_1, \varphi_2, \ldots, \varphi_n)(t) = 0$ 

- b) For the existence and uniqueness theorem for the initial value problem y = f(x,y),  $y(x_0) = y_0$ , prove that the theory could be applied to over a large interval that granted by the(E&U) theorem .i.e there exist a unique solution over the open interval a < x < b, (Discuss and prove).
- 4-a) Prove that the unique solution  $\phi$  of the H.L.V.D.E. dx/dt=A(t) x that satisfies the I.C  $\phi(t_0)=x_0$ ,  $t_0 \in I$  Can be expressed in the forms  $\phi(t)=\Phi(t)$  C and  $\phi(t)=\Phi(t)$   $\Phi^{-1}(t_0)$   $x_0$  where  $\Phi(t)$  is a fundamental matrix.
- b) Give the solution of the L.H. V.D.E  $\frac{dx}{dt} = \begin{pmatrix} 7 & -1 & 6 \\ -10 & 4 & -12 \\ -2 & 1 & -1 \end{pmatrix} X$  (10mark)