Mansoura University Faculty of Science Chemistry Department

Subject: Biochem 279

Second Term Exam 2015/2016 2nd Level Chemistry students

Date: 18.05.2016

Time allowed: 2 hours Total Mark: 80 Marks

Course: Biochemical molecules and amino acids

Answer the following questions:

(Provide your answer with formula, equation, pathways, figures or tables wherever possible)

1- Write about t	citration of an	nino acids a	and formal t	itration
				(25 Marks)
2- Show and dis	cuss the prim	ary and se	condary stru	cture of proteins (25 Marks)
3- Discuss factor	rs which affec	et enzymati	c activity	(30 Marks)

With best wishes Prof. Dr. Mohamed ElFar Mansoura University

Faculty of Science

Chemistry Department

Subject: Chemistry

Course(s): Chem.233 Organic Reactions Mechanism II

Second Term

2nd Level Chemistry Students

Date: May, 2016, 22 -5-2015

Time Allowed: 2 Hours Full Mark: 60 Marks

Q. 1 Give the structure of the product for each of the following reactions. Please do not forget to discuss and

draw out the reaction mechanism in each one.

(20 Marks)

Q. 2 a) In each of the following pairs of compounds decide which one that fits the description.

Explain your answer

(15 Marks)

i-- More reactive toward cyanohydrin formation

ii- Has higher PKa value

iii- More suitable for ylide synthesis with Ph₃P/Bu-Li

iv- Much stronger base

v- More reactive toward amminolysis

vi- Have higher equilibrium constant for hydration

$$H_3C$$
 H_3C
 CH_3
 CH_3

vii- reacts with C₆H₅SO₂Cl forming product soluble in AgNO₃

b - For the following reaction, the results shown below are obtained:

(5 Marks)

O +
$$CH_3CH_2Br$$
 $(C_6H_5)_3P$ H_3C H + CH_3 CH_3

Write all steps involved in the formation of the reaction products with explanation the difference in percent of the two products as shown in the equation.

Q. 3: Answer the followings

- a) Compare the behavior of aniline (C₆H₅NH₂) and acetanilide (C₆H₅NHCOCH₃) toward mononitration with Conc. HNO₃. Please don't forget to discuss the reaction mechanism based on resonance structures for each case

 (6 Marks)
- b) Base catalyzed reaction of bezaldehyde in presence of sodium methoxide CH_3ONa , the product that was isolated was found to be benzyl benzoate C_6H_5 -CO-O- CH_2 - C_6H_5 . What does this suggest about the mechanism for the reaction? (5 Marks)
- c) When 4-hydroxy-2-(hydroxymethyl) butanal is treated with methanol in presence of an acid catalyst, product with molecular formula $C_6H_{12}O_3$ is formed according to the following equation. Explain with indicating the reaction mechanism the formation of such product (5 Marks)

d) What is meant by ylide? Then indicate what type of ylide required for the following reaction. A mechanism of reaction is required (4 Marks)

Good Luck

Examiner:

Dr. Ebrahim Abdel-Galil

Mansoura University

Faculty of Science

Chemistry Department

Subject: Quantum chemistry

Course: Chem. 244

Second year Major

Chemistry Students

Time Allowed: 2 hours

Full Mark: 80 Marks

Date: 15/5/2016

Answer the following question:

Question One (20 mark):

A:- Explain graphically how emitted radiation from a heated body is dependent on its temperature. (7 mark)

B:- Prove that $\hat{H} \psi = E \psi$

(7 mark)

<u>C:- Explain:</u> the lowest energy level for $H_2C=CH-CH=CH-CH=CH_2$ \square $H_2C=CH-CH=CH-CH=CH-CH_2$ and Comment on your result. (6 mark)

Question Two (20 mark):

A:- Describe a function of a particle moves in a one dimensional box?

(7 mark)

B:- Determine Heisenberg uncertainty in momentum and position of electron moving in a system, if uncertainty in velocity is 10^{-7} m/s. (7 mark)

<u>C:</u>- Compare between the photon concept according to Einshtein and Compton?

(6 mark)

Question Three (20 mark):

<u>A:</u>- One of quantum theory **Postulate** explain the Heisenberg principal (illustrate by example) (7 mark)

B:- When a photon colloid with a matter, the expected effect is highly dependent on the photon energy, explain (three cases). (7 mark)

C:- Explain the conditions which must be satisfied for a wave function to be acceptable as a solution of Schrodinger eqn. ?? (6 mark)

Question Four (20 mark):

- A:- Illustrate what are the corrections which made by Bohr to correct the value of Heisenberg const. (4 mark)
- B:-Zeeman effect.. ...Stark effect. (2 mark)
- C:- What do you understand from the following?

(12 mark)

- 2- $\hat{A}\hat{B} \hat{B}\hat{A} = zero$
- 3- $5 \cdot \frac{o}{\delta x} e^x = 5e^x$, $\frac{\delta}{\delta x} \cdot 5e^x = 5e^x$
- 4- $\frac{d}{dx}[f_{(x)} + g_{(x)}] = \frac{d}{dx}f_{(x)} + \frac{d}{dx}g(x)$
- 5- $\int_{-\infty}^{\infty} \psi * \hat{A} \psi dt = \int_{-\infty}^{\infty} \psi \hat{A} \psi * dt$
- 6- $\psi_m, \psi_n: \int_0^a \psi_m \psi_n dx = zero$

With my best wishes

Dr. Shady M. El-Dafrawy

Mansoura University
Faculty of Science
Chemistry Department
Subject: Nuclear& Bonding
Chemistry

Course(s): Chem. 222

i) increased

Second Term Second Year Chem. Date: 29.05. 2016 Time Allowed: 2 hours Full Mark: 60 Marks

	Section	on A:" Nuclear Cher	mistry"	
Answer the following	Questions: (15	Marks for each quest	ion)	
Q1.a) Write briefly or	the units of radi	oactivity (curie and ruthe	erford) showing how	you detect and
measure the radia				(4 Marks)
b) ²⁷ ₁₃ Al is stable i	isotope but ²⁴ ₁₃ A	l is expected to disintegra	ate by:	
(i) α emission.	(ii) β emission.	(c) positron emission.	(iv) proton.	(4 Marks)
c) One gram of ¹⁹⁸ 79	$_{9}$ Au ($t_{1/2}$ = 65 year	rs) decays by β emission	to produce stable H	g. Answer the
		eaction for the process.		
(ii) He	ow much Hg will	be present after 260 hrs.		(4Marks)
d) Explain the differ	ence between che	emical and nuclear reaction	ons.	(3 Marks)
Q2. a) Write brieflyon	: (i) Types of iso	topes.		(5 Marks)
	(ii) Uses in ana	lytical chemistry and med	dicine.	
b) Calculate the b	inding energy per	r nucleus in $^{35}_{17}$ Cl ? ($^{1}_{01}$	n = 1.008930 am	a, ¹ ₁ H= 1.00787
amu and 35 ₁₇	Cl= 34.9800 ar	nu).	lim to some grant to	(5 Marks)
c) At radioactive ed	quilibrium, the ra	tio between atoms of two	radioactive elemen	$ts A/B = 3.1x10^9$
If $t_{1/2}$ of A=2x10	⁹ years, what is t ₁	/2 of the element B.		(5 Marks)
arkeld ()		B: "Symmetry& B	onding"	
Answer the following	questions	itali oznale isti. Sinkis sa sa		
Q1-a) Write short note	es on three of the	following:		(5 Marks)
i) Band theory sho	wing the types of	metals according to elec	trical conductivity.	
ii) Superconductor	s with examples.			
b)-Choose the apprec	ciate answer of th	e following:		(10 Marks)
1)In ccp, the sphere	s occupy	of the total space with a	centeral sphere surro	ounded
bynearest	neighbours.			
i) 48%, 6	ii) 68%, 8	iii) 52%, 12	iv) 74%,8	
2) The electrical con	ductivity of n- &	p- semiconductor increas	ses as the temperatu	re is

iii) not changed

Please Turn over→

ii) lowered

3.In hep and fee arrangements, the	e C.N. of each atom is	
i) 6	b) 8	c) 12
4) has a negative ions in a	array with positive ions in the	holes with radius ratio 0.52.
i) CdI ₂ ,fcc, tetrahedral	ii) CaF ₂ ,hcp, octahedral	iii) NaCl, ccp, octahedral
5) Alloy such as Rb/Cs is	miscible and is related	toalloys.
i) partially, ionic	ii) not, interstitial	iii) completely, substitutional
6) CuSe alloy crystallizes with	structure where each Se atom is su	arroundedbyCu atoms.
i) fluorite, tetrahedrallys, 8.	ii) CdI ₂ , octahedrally, 6.	iii) NiAs, octahedrally, 6.
7) Semiconductor are manufactur	ed by addition of impurities of	elements.
i) s-block	ii) p-block c) lanthanides	iv) actinides
8) According to Pauli's theory, th	e bonding in metals is essentially.	bonding.
i) ionic	ii) hydrogen	iii) covalent
9) A compound is formed by elen	nents A and B. This crystallizes ir	bcc structure (Draw) where
A ions are half as B ions and 4	A ions are tetrahedrally around ea	ch B ion. Thus C.N. ratio is 8:4.
The simplest formula of the co	ompound is	
i) AB ₂	ii) AB ₃	iii) AB
10) CaC ₂ like has as	structure.except that linear C ₂ -2 ion	s oriented in the same direction.
i) CsCl, bcc ii)	CdI ₂ , layered iii)NaCl, fcc	iv)NiAs, hcp
Q2 a) The mechanical proporties	of malleability and ductality of me	etals is related to their crystalline
structure. Explain.		(4 Marks)
b) Indicate with drawing the	difference between hcp and ccp arr	rangements. (4 Marks)
c)- True and false (circulate	the correct response). Correct the	false one:- (7 Marks)
i) T - F bcc structure is less e	efficient at filling the space than o	eep structure.
ii) $T - F$ $K_2[Pt Cl_4]^{2-}$ adopts fl	uorite structure.	
iii) T – F The electrical conduc	tivity of a metal increases with in	creasing T.
iv) T - F Diamond has essenti	ally the same structure as Zinc ble	ende.
v) T-F CdCl ₂ crystallizes w	ith fcc structure (ABABAB).	
vi) $T - F$ Zn blend is related to	o a fcc structure whilst wurtzite to	ccp structures.
	With Best Wishes	

Examiners: Prof.Dr. G.M. Abu El-Reash & Prof.Dr. O.A. El-Gammal

الفرقة: الثانيـــة

الشعب: كيمياء-كيم/ح-كيم/ن-

جيولوجيا -علوم بيئة-ميكروبيولوجي

المادة: رياضيات بحتة - ر 201

الزمن: ساعتــان التاريخ: 1/6/6/1

دور مايو 2016

كلية العلوم - قسم الرياضيات

أجب على الأسئلة الآتية:

وذلك عندما تؤول
$$f(x,y) = \frac{x^2y^2}{x^4+y^4}$$
 النقطة التكرارية والنهاية العامة الدالة $f(x,y) = \frac{x^2y^2}{x^4+y^4}$ وذلك عندما تؤول $f(x,y) = 10$ النقطة $f(x,y) = 10$ (0,0) النقطة (0,0) (0,0) النقطة (1,0) (0,0) النقطة (1,0) (0

أطيب التمنيات بالتوفيق ح

10]

Mansoura University
Faculty of Science
Chemistry Department
Subject: Chemistry
Course(s):No.(245) Physical
Chemistry of liquids and

solutions

Summer Term Second year Students Special Chemistry-level 2 Date: Summer 2016 Time Allowed: 2 hours Full Marks: 60 Marks

Answer the following questions:

1.a) Explain the partial molar quantities with special explanation of the partial molar volumes and their methods of determination of the last.

(10 marks)

b) The boiling point of benzene is raised from its normal value of 80° C to 80.4° C by the addition of 12.63 g of biphenyl $C_6H_5C_6H_5$, to 100 g benzene. What are the boiling point elevation constant and the heat of vaporization of benzene. (Atomic weights ,C=12 ,H=1).

(10 marks)

- 2. a) Write shortly on the different colligative properties of solutions and their modified laws with explanation of Van't Hoff factor. (10 marks).
- b) Calculate the free energies, enthalpies and entropies per mole solution at 303.15K for the mixing of 0.35 mole of pure benzene with 0.65 mole of pure toluene.(R = 8.31 J/mole.K). (10 marks)
- 3. a) Write on the different applications of conductance measurements for different solutions.

(10 marks)

b) The specific conductance of $1x10^{-3}$ M of acetic acid at 20° C is $4.6x10^{-4}$ ohm⁻¹. The conductance values of the hydrogen and acetate ions at infinite dilution are 310 and 77 ohm⁻¹ cm² mol⁻¹, respectively. Calculate the dissociation constant of acetic acid.

(10 marks)

With best wishes; Prof.Dr.Esam Gomaa

Mansoura University
Faculty of Science
Chemistry Department
Subject: Chemistry
Course: Chem. 234
Organic Spectroscopy

Second Term 2rd Level:

Chemistry program

Date: 05 June. 2016 Time Allowed: 2 hrs Full Mark: **80** Marks

Answer All Questions;

Question 1:	Select the correct answ	ver	(30 Mark)
1. A non linear molecule v A) 3N - 3	with (N) atoms generally has B) 3N - 4	c) 3N – 5	D) 3N - 6
2. How many different typ	es (sets) of hydrogens are	there in the followin	ng compound?
A) 2	B) 3		
C) 4	D) 5	in patient	
3. Which of the following NMR spectrum?	gives the furthest (C-H) d	ownfield shift from	TMS in its proton
CI	CI CI	Br CH Br	Br CH Me
		- Elegan	a " " Brance
l Me	I Me	Me	Me
(a)	(b)	(c)	(d)
4. What is the splitting typ following compound?A) singletC) triplet	B) doublet D) quartet	o o o	
5. The proton ¹ H- NMR s	pectrum of 1,1,2-trichloro	ethane would appea	ar as a
A) downfield doublet	and upfield quartet.	B) downfield n	nultiplet and upfield doublet.
C) downfield doublet		D) downfield t	riplet and upfield doublet.
6. ¹ H-NMR spectrum of 6 6:4 ratio, respectively. A) 1,1- Dichlorope. C) 1,5- Dichloropro		s a triplet at δ 1.89 a est matches the data B) 3,3- Dichlor D) No One of the	opentane
7) Absorption of what typ A) UV B)	e of electromagnetic radia IR C) X ray	tion results in electr	onic transitions? Radio waves

	A) hex-1-ene		curs at the highest stretch C) hex-2-yne	
9) Which one	of the following ha	is a λ_{max} in its UV-	visible spectrum with th	e highest wavelength?
	A)		B)	
andged year	(c)		D)	
A) (C)	pound would be ex H ₃) ₂ CHCN I ₃ CH ₂ CONH ₂	spected to show in	tense IR absorption at 3 B) (CH ₃) ₂ CH D) (CH ₃) ₂ CH	
1) Which com	pound would be ex		tense IR absorption at 3 b) HC CCH₂CH	
	c)	CN	d)	ОН
2)Which of the frequency?	e following has a (A) hex-1-ene	C-H stretch that oc B) hexane	ccurs at the highest street C) hex-2-yne	tching D) hex-1-yne
3) The IR spec rganic compos) Alkyne.	ctrum of a sample o unds does this sam B) Alkene.	ple?	n at 3950, 2950, 1620 c Esters.	m -1 . To what class of D) Alcohol.
	highest wave numb	per of the following H ₂ C=O	g bonds : C) C≡■N	D) O—H
			est λ_{max} in its ultraviolet	

(15 Mark)

Use the Woodward-Fieser rules to predict the expected λ_{max} for the following compounds:

Question 3:

(15 Mark)

A) Which is the best spectroscopic method(s) from the following IR, UV, 1H-NMR can be used to distinguish between the following pairs:

B) Give a structure consistent with each of the following sets of spectral data:

a; $C_6H_{15}N$ ¹H-NMR δ(ppm) : 1.20 (triplet, 9H) 2.44 (quartet, 6H). **b;** $C_5H_{10}O_2$ ¹H-NMR δ = 1.33 (singlet, 6H) & 4.27 (singlet, 4H) **c;** $C_{11}H_{14}O_2$ "IR (Cm⁻¹) v = 3010, 1740, 1590 Cm⁻¹ "

¹H-NMR δ = 1.43 (doublet, 6H) & 3.51 (singlet, 2H) & 4.32 (heptet, 1H)., 7.12 (multiplet, 5H).

Question 4:

(20 Mark)

Write shortly, what you know about:

- A) The role the inductive effect in the value of the wave number (ν).
- B) Modes of vibrations?
- C) Define of the following:

Hook's Law.

IR inactive compounds

Bathchromic and Hypschromic.

Integration Curve.

; Anistroic effect.

Shielding and deshielding effect.