à, belévis de co ... lejie c

Mansoura University Faculty of Science Physics Department

Course code: Phys 210

Summer semester 2012-2013

2nd level Physics Students Full Mark: 80

Allowed time: 2 hours

Course title: Thermodynamics

Answer all the following questions:

Marks

1-	a-	Find the entropy of a perfect gas as a function of (T,V), (T,P) and (P,V).	25
	b-	Calculate the change in entropy if the gas is heated from 300 to 600 $^{\circ}$ K while pressure drops from 400 to 300 N/m² (C _p =1.04 KJ/Kgm $^{\circ}$ K , R=8.3 K Jolue/Kgm. $^{\circ}$ K).	
2-	a-	One gram mole of a gas C_v =20.8 J/gm mole ${}^{\circ}K$ at temperature 127 ${}^{\circ}C$ and pressure 1 atmosphere. The gas is heated at constant volume until its pressure doubled, then the gas expands adiabatically until its temperature returns to 127 ${}^{\circ}C$ and finally the gas compressed isothermally until return to its initial volume. 1- Draw the cycle on (P-V) and on (T-S) diagram	25
		2- Calculatei. The work done during adiabatic changeii. The change in enthalpy and entropy during the isothermal change	
		iii. The efficiency of the cycle (R=8.3 J/gm mole °K).	
3-	a-	Show that the slope of an isenthalpic curve on a T-P diagram at any point (the Joule –Kelvin coefficient is given by $\mu_j = \frac{v}{c_P} (\beta T - 1)$	30
	b-	Derive an expression gives μ_J for a gas obeying the Vander Waals equation of state and find the values of μ_J for a perfect gas.	

Best wishes:

C.5 /

دور صيف : ١٠١٣ ٢٠١٣ الزمن : ساعتان

C.KININ: 601.

۹ المادة: معادلات تفاضلية (204)
 المستوى: الثاني (فيزياء + فيزياء حيوى)
 أستاذ ألمادة ا.د.على شمندى

كلية العلوم - قسم الرياضيات

أجب عن الاسئله التاليه:

السوال الاول: اوجد حل المعادلات التفاضلية التالية

$$\frac{dy}{dx} \left[sin^2 \left(\frac{x}{y} \right) + \frac{x}{y} \right] = 1$$
 (i

$$(D^2 - 16) y = \sin^2 x + 7e^{3x}$$
. (iii

السؤال الثاني:

(10marks)
$$x^2 + (y-c)^2 = c^2$$
 departs as the line of the line o

(10marks) (
$$y' + 1$$
).Ln $\left(\frac{y+x}{x+3}\right) = \frac{y+x}{x+3}$.

السوال الثالث:

$$ty''(t) + y'(t) = 4t^2$$
, $y(0) = 1$, $y'(0) = 0$

b) اوجد حل المعادله التفاضلية :

$$\frac{dy}{dx}(x^2y^3 + xy) = 1$$

السؤال الرابع:

اوجد حل المعادلات التفاضلية التاليه:

(10mark) باستخدام طریقه تغییر البارامتر
$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2 = \frac{1}{xe^x}$$
 (a

$$(\tan^{-1}y)^6 (x^3 - 6x^2 + 11x - 6) dy + (1 + y^2) dx = 0$$
 (b)

فع ال فيا موية - (فيا فزا مون كونة السولوم)

Mansoura University
Faculty of Science
Physics Department
Course code: Bio-Phys 211
Course title: General biophysics

September 2013 Date:18-8-2013 2nd Level students Biophysics-Physics-Microbiology-Chemistry-Biochemistry-Chemistry Botany - Chemistry Zoology and Environmental Science

Full Mark: 80

Allowed time: 2 hours

Answer all the following questions:

1- A- Write true ($\sqrt{ }$) or False (χ)

[each item = 1.5 Mark]

- i. The ear canal behaves like a pipe open from one end and the other end is closed by tympanic membrane.
- ii. The frequency range detected by the human ear is between 20 Hz-20000 Hz.
- iii. Hypermetropia caused by irregularity shaped cornea results in light focusing in front of retina.
- iv. There are three types of color sensitive rods in retina.
- v. The human eye is organ design to receive visible light having wavelengths between 380 and 760 μm .
- vi. The afferent neurons are those axons travel from sensing areas to the spinal cord
- vii. Non ionizing radiations are known to cause DNA damage, cancer, mutation and birth defects.
- viii. The electric potential of the brain can be measured by electro-encephalogram ECG.
- ix. There are negative charges on the outside of the cell membrane of neurons than the inside produces a resting potential of -90 mV.
- x. The conduction speed of myleinated axons is given by $u = 1.8\sqrt{a}$ (m/sec) where a is the radius of axon (μ m).
- **B-** Calculate the capacitance per unit length and area of an unmyleinated axon, if the material in the axon membrane has dielectric constant K=7 and ε_0 =8.85x10⁻¹² S/ohm-m and the radius a= 3.5x10⁻⁶ m and thickness of membrane is b=5x10⁻⁹ m. [5 Marks]
- C- What is the total flow resistance of a two parallel arteries in a calf have radius 0.4 mm and length 120 mm? If the volume flow rate of blood through these arteries is 1.4×10^{-6} m³/sec, what is the pressure drop across the arties knowing that $\eta_{blood} = 3.5 \times 10^{-3}$ poise.

[5 Marks]

2- A- Complete the following sentences: (each item = 2 Mark)

• In(1).....effect, electron is ejected from the atom and is accompanied by scattered ...(2)......

- The P-Wave in ECG indicates(3).....of the right and left(4)..... waves of EEG have frequency range(5).....Hzalpha in(6).....state. Find an expression given for the decay constant of a radionuclide and its relation with Bthe half life time? [8 Marks] If a person has an unaided near point of 0.4 m, what would the power of a lens make him able to see an object at 25 cm? [5 Marks] 3-A-[each item = 1 Mark] Choose the correct answer: The retina of the eye contains two types of photoreceptors cones and (Spheres- triangles- rods-rectangles). ii. 1 gray equal (1 rad- 10 rad-100 rad-1000 rad). The flow of ions causes an electric current in the ion chamber with intensity iii. About of cones are green sensitive. (32%-42%-52%-62%). iv. 1 rem equal (0.1 Sv-0.01 Sv-0.001 Sv-0.0001 Sv). V. The beta particles are a fast moving(protons-neutrons-electronsvi. photons). provide the eye's color sensitivity (Rods –Cones- Corneas –Irises). vii. The percent of hydrogen atoms in human body is (53%-63%-73%-83%). viii. [each item = 2 Marks] B-Define the following: d. Decibel a. Radiation flux e. Magnetic resonance imaging b. Graded potential c. Depolarization Calculate the lowest frequency in which sound resonates in ear, knowing that the velocity of sound is C=350 m/sec and the ear canal length is L=2.5 cm (n=1 when $L=\lambda/4$).
 - Best wishes:

half life time knowing that Avogadro's number=6.02x10²³.

If you have 1gm of ²²⁶Ra that emits 3.7x10¹⁰ photon/sec. What is the decay constant and

[6 Marks]

Mansoura University
Faculty of Science
Chemistry Department
Subject: Organic Chemistry

عنارس - (د ۲۵)

First Term

2nd year: Biology & Biophysics Student

Date: Sep. 2013 Time Allowed: 2 h Full Marks: 60 Marks

Answer the following questions:

Q1- Complete the following equations: [20 marks]

vi-
$$H_3C-C\equiv CH$$
 $\frac{1-Na}{2-CH_3-Cl}$ $\xrightarrow{\bigoplus}$ HOH

Q2: Illustrate the following: [20 marks]

- a) Draw the chemical structure of the following compounds:
- i- 3-bromo-1-butanol
- ii- Isoheptyl alcohol
- iii- 2-buten-1-ol

b) Write the IUPAC name of the following:

- c) Draw all isomers and assign the type of isomerism in each of the following compounds:
 - 2-Butene i-
 - $C_5H_{10}O_2$ 11-
 - 1,2,3-Butantriol. 111-
- Q3- By chemical equations illustrate how to make the following conversions. [20 marks]
 - i-Ethylene to acetone
 - Methyl bromide to acetic acid ii-
 - Ethanol to 2-propanol iii-
 - Acetone to 2-butanol iv-
 - 2-Bromopropane to tert-butyl alcohol

With our best Wishes

Examiners:

Prof. A.A. Fadda, Dr. D.M. Ayad, Dr. M. Monier, and Dr. M. Elsayed

> فنطاد. في ماى المرونة

Mansoura University **Faculty of Science Physics Department**

Course Title: Elasticity

Date: 27/8/2013

Exam Type: Summer Second Level: (Physics) Time: 2 Hours Full Mark: 80 Mark

Answer the following questions:

1- a- Compared between elastic and viscoelastic material?	[10 Mark]
b- What is the meant by fatigue. Mention the type of fatigue	[6 Mark]
c- Write on the following: - Stress- Elasticity- Strain	[9 Mark]
2- a- What is the meant by creep. Mention the types of creep	[10 Mark]
b- Write on the following: -	[15 Mark]
Dynamic modulus- Deformation- Toughness- Resilience	
3- a- Explain the factors effecting on the fatigue life.	[10 Mark]
b- Write on the following:-	
Elastic moduli- Fracture - Stages of creep	[15 Mark]
c- Discuss Stress- Strain curve	[5 Mark]
-	

With best wishes

Examiner

أ.د. أبوبكر البديوى

cc. is aunte

University of Mansoura
Faculty of Science
Sophomore Students
Date: August 2013
Time allowed: 2 hours

Answer The Following Questions

Course (s): Phys 220

1- a) What potential difference is required to accelerate an electron from rest to velocity o.6 c?

Modern Physics

Rest mass of the electron = 511 keV

(10 marks)

Full Mark:: 80

- b) The kinetic energy and the momentum of a particle deduced from measurements on its track in nuclear photographic emulsions are 250 MeV and 368 MeV/c, respectively. Determine the mass of the particle in terms of electron mass and identify it. (10 marks)
- 2- An electron has kinetic energy equal to its rest energy. Show that the energy of a photon which has the same momentum as this electron is given by $E_{\gamma} = \sqrt{3}E_{0}$, where $E_{0} = m_{e}c^{2}$ (15 marks)
- 3-a) Write about and discuss the spectrum of the black body radiation and show how the ultra-violet catastrophe can be explained (10 marks)
- b) State and discuss the deBroglie hypothesis (5 marks)
- c) The position of a point in the four-dimensional space is expressed by a space-time four-vector of length S. Prove that S is invariant quantity.

 (10 marks)
- 4-a) Find a relation between the proper length and improper length (10 marks)
- b) Write and explain the ultraviolet catastrophe in blackbody spectra (10 marks)

Prof. Dr.: M.A Abouzeid

Mansoura University **Faculty of Science Physics Department Subject: Physics**

Summer Term

Credit Hour Students: Physics

Date: 22 August 2013 Time allowed: 2 hours

Course: Physics 212, Meteorology & Astronomy

Full Mark: 80 Mark

Answer the 1 st question, then any other two questions				
[1] a- Derive the orbital potential energy equation for the orbit of a bod under the effect of a central force , when $r \neq r(\theta)$	[10] Marks			
b- A body moves under the effect of central force in an orbit of radii by $r = 2a \cos \theta$, determine:	us is given			
i- The potential energy V(r),	[10] Marks			
ii- The force F(r).c- Calculate the mass of Sun using the facts that the distance between	[5] Marks earth and			
the Sun is 150×10^6 Km and earth revolution time is 365 days. [$G = 6.67 \times 10^{-11}$ N m ² Kgm ⁻²]	[5] Marks			
 [2] a- State Kepler's 1st law. b- Define the Eccentricity. c- Using the definition of the Eccentricity derive Kepler's 1st law. 	[3] Marks [7] Marks [7] Marks			
d- Define each of the following:i- Dynamic meteorology.ii- Synoptic meteor	[8] Marks ology.			
iii- Agricultural meteorology. iv- Climatology.				
[3] a- For El-Mansoura of latitude 31°N, on 22 of Mars, Calculate: i-The declination angle. ii-The zenith angle, at 10:00 LAT. iii-The time of sunrise iv-The day length.	[12] Marks			
b-The density of the atmosphere depends on the temperature and on the Discuss this phrase with deriving the corresponding equations.	he altitude. [13] Marks			
[4] a- Mercury has no atmosphere. Discuss this phrase.	[9] Marks			
b- The weather is affected by atmospheric parameters. Discuss this p giving the names of at least 5 instruments are used for measuring the parameters. c- Describe the airing method for determination of relative humidity.	ese [8] Marks			
Good Luck				

Examiners: 1- Prof. Dr. Magdy Tadros Yacoub* 2- Prof. Dr. Emad Khedr