Essá lucles - u significa dos

Mansoura University Faculty of Science Botany Department El-Mansoura, Egypt

جامعة المنصورة كلية العلوم قسم النبات المنصورة ـ مصر

Educational Year: Second Level

Course: General Microbiology

Final Examination in

Subject: Botany

Botany

Summer Term: August

Program: Biology Programs

Code: B Y . £

Time: \(\text{hours} \) Date: \(\text{\lambda} \setminus \) \(\text{\lambda} \)

Full Mark: 7.

Question Mark: Y.

Answer the following questions:

 (Q^1)

(A) Complete the missing parts:

(V mark)

- 1) Microbial growth could be determined directly using......and indirectly by......
- Activities of microorganisms may be harmful as.....or beneficial as.....
- •) ...is one of the sterilization methods that removes microorganisms rather than killing them.
- 7) Chemical substance that can be added to microbiological nutrient media and changing their physical properties is called......
- V) Microbiology is the branch of science that studies.....

(B) <u>True or false (Circulate T or F letters) and correct the false statement(s)</u>: (Y mark)

- (T F) Living organisms are classified into two domains according to Woese system of classification.
- () (T-F) Streak-plate method is used for enumeration of microorganisms.
- (T F) Glycocalyx is one of the cell wall external structures.
- (T-F) Some components of the chemically defined media are of known exact formula.
- •) (T-F) Carbon is the most macronutrients required by microorganisms.
- (1) (T F) Osmotolerant microorganisms can survive in high salt concentrations.

إ تابع بقية الاسئلة في الخلف

(C)	Choose	the	correct	answer:			
(\mark)	1 - 0.1 - 0.11 - 1			1 1 1 1 2 2 2 1			
-			_	dehydration of a bacter			
		apsule		Aurein layer d. termining the number of	Plasma membrane of viable		
-	teria per ml?	ing is most i	chable for de	termining the number (or viable		
oue	-	neasuremen	t	b. Direct micros	conic count		
	a. Turbidity measurement c. Weighing the bacteria			d. None of the above			
۳) In oh			eroxide dismu	tase and catalase work			
	onvert the super	-			together		
	_			. Oxygen and water	d. Ozon		
				d juices is called	ur o zon		
í	Filtration	b. Tyndal		c. Pasteurization	d. All		
	nicrobial divers	•					
•	a. Shape	b. S		c. Structure	d. All		
	irst person who	observed m	icroorganisms	s was			
	nie van Leeuw				Hooke d. None		
(Q [†])							
(A) Defin	ne:				(' · mark)		
1) Ge	eneration time			Y) Microaerophiles			
۳) Ca	ardinal temperat	tures		(a) Oligodynamic et	fect		
(B) With	clear labeled	diagrams; c	ompare and	contrast between gra	m positive		
and gran	negative cell	wall of bacto	eria. ('· ma	rk)			
(Q ^r)							
Discuss w	ith illustration	<u>s:</u>		(۲· ma	rk)		
1) Gr	owth curve of u	ınicellular m	icroorganism	s.			
۲) Bi	nary fission in l	oacteria.					
۳) Nı	utritional classe	s of microorg	ganisms.				
٤) Di	scuss the physic	cal methods	of microbial g	growth control.			
Examin	ers:		1 4/1 2 2 2		P 1 =		
					17,77		
Ass. Pr	of. Dr. Mervat	H. Hussein		Dr. Ghada Samir Abo	ou-ElWafa		

فع ١١٦ حقرمة في العزيار المدية (فيل من مرى حديث السواح)

Mansoura University
Faculty of Science
Physics Department
Course code: Bio-Phys 211
Course title: General biophysics

September 2013 Date:18-8-2013 2nd Level students Biophysics-Physics-Microbiology-Chemistry-Biochemistry-Chemistry Botany - Chemistry Zoology and Environmental Science

Full Mark: 80

Allowed time: 2 hours

Answer all the following questions:

1- A- Write true ($\sqrt{ }$) or False (χ)

[each item = 1.5 Mark]

- i. The ear canal behaves like a pipe open from one end and the other end is closed by tympanic membrane.
- ii. The frequency range detected by the human ear is between 20 Hz-20000 Hz.
- iii. Hypermetropia caused by irregularity shaped cornea results in light focusing in front of retina.
- iv. There are three types of color sensitive rods in retina.
- v. The human eye is organ design to receive visible light having wavelengths between 380 and 760 μm .
- vi. The afferent neurons are those axons travel from sensing areas to the spinal cord
- vii. Non ionizing radiations are known to cause DNA damage, cancer, mutation and birth defects.
- viii. The electric potential of the brain can be measured by electro-encephalogram ECG.
- ix. There are negative charges on the outside of the cell membrane of neurons than the inside produces a resting potential of -90 mV.
- x. The conduction speed of myleinated axons is given by $u = 1.8\sqrt{a}$ (m/sec) where a is the radius of axon (μ m).
- **B-** Calculate the capacitance per unit length and area of an unmyleinated axon, if the material in the axon membrane has dielectric constant K=7 and ε_0 =8.85x10⁻¹² S/ohm-m and the radius a= 3.5x10⁻⁶ m and thickness of membrane is b=5x10⁻⁹ m. [5 Marks]
- What is the total flow resistance of a two parallel arteries in a calf have radius 0.4 mm and length 120 mm? If the volume flow rate of blood through these arteries is 1.4×10^{-6} m³/sec, what is the pressure drop across the arties knowing that $\eta_{blood}=3.5 \times 10^{-3}$ poise.

[5 Marks]

2- A- Complete the following sentences: (each item = 2 Mark)

• In(1).....effect, electron is ejected from the atom and is accompanied by scattered ...(2)......

The P-Wave in ECG indicates(3).....of the right and left(4)..... alpha waves of EEG have frequency range(5).....Hzin(6).....state. Find an expression given for the decay constant of a radionuclide and its relation with Bthe half life time? [8 Marks] If a person has an unaided near point of 0.4 m, what would the power of a lens make him able to see an object at 25 cm? [5 Marks] A-Choose the correct answer: [each item = 1 Mark]The retina of the eye contains two types of photoreceptors cones and (Spheres- triangles- rods-rectangles). ii. 1 gray equal (1 rad- 10 rad-100 rad-1000 rad). iii. The flow of ions causes an electric current in the ion chamber with intensity iv. About of cones are green sensitive. (32%-42%-52%-62%). 1 rem equal (0.1 Sv-0.01 Sv-0.001 Sv-0.0001 Sv). v. vi. The beta particles are a fast moving(protons-neutrons-electronsphotons). vii. provide the eye's color sensitivity (Rods –Cones- Corneas –Irises). viii. The percent of hydrogen atoms in human body is (53%-63%-73%-83%). Define the following: [each item = 2 Marks] a. Radiation flux d. Decibel b. Graded potential e. Magnetic resonance imaging c. Depolarization Calculate the lowest frequency in which sound resonates in ear, knowing that the velocity of sound is C=350 m/sec and the ear canal length is L=2.5 cm (n=1 when If you have 1gm of ²²⁶Ra that emits 3.7x10¹⁰ photon/sec. What is the decay constant and half life time knowing that Avogadro's number=6.02x10²³. [6 Marks]

Best wishes:

Dr Hany Kamal

Es lucles - u - order às se

Mansoura University Faculty of Science Botany Department El-Mansoura, Egypt

جامعة المنصورة كلية العلوم قسم النبات المنصورة ـ مصر

Educational Year: Second Level

Final Examination in

Subject: Botany

Botany

Course: General Microbiology

Summer Term: August

Program: Biology Programs

Code: B ۲ · ٤

Time: 7 hours

Date: Y · / \/Y · 17

Full Mark: 7.

Question Mark: Y.

Answer the following questions:

 (Q^1)

(A) Complete the missing parts:

(V mark)

- 1) Microbial growth could be determined directly using......and indirectly by......
- Activities of microorganisms may be harmful as......or beneficial as......
- •) ...is one of the sterilization methods that removes microorganisms rather than killing them.
- (1) Chemical substance that can be added to microbiological nutrient media and changing their physical properties is called......
- Y) Microbiology is the branch of science that studies.....

(B) <u>True or false (Circulate T or F letters) and correct the false statement(s)</u>: (Y mark)

- (T F) Living organisms are classified into two domains according to Woese system of classification.
- Y) (T-F) Streak-plate method is used for enumeration of microorganisms.
- (T-F) Glycocalyx is one of the cell wall external structures.
- (T-F) Some components of the chemically defined media are of known exact formula.
- •) (T-F) Carbon is the most macronutrients required by microorganisms.
- (T F) Osmotolerant microorganisms can survive in high salt concentrations.

إ تابع بقية الاسئلة في الخلف

(C) <u>Cl</u>	100se	the c	orrect	answer:	
(7 mark)					
1) Which of the	ne followi	ng structures pre	vent the deh	ydration of a bacter	ium?
a. Fimbria		apsule		•	Plasma mer
bacteria p		ring is most reliat	ole for deterr	nining the number of	of viable
a. Tu	rbidity n	neasurement		b. Direct micros	scopic count
c. W	eighing t	he bacteria		d. None of the a	bove
") In obligate	aerobic b	pacteria, superoxi	de dismutase	e and catalase work	together
to convert	the super	oxide radical to			
a. Hydroge	en b. Hy	drogen peroxid	e c. O:	xygen and water	C
(a) The process	s that kills	s the pathogens in	n milk and ju	ices is called	
a. Filtrat	ion	b. Tyndallizat	ion c. P	Pasteurization	d. All
•) The microb	ial divers	ity was illustrated	d in		
a. Sha	pe	b. Size		c. Structure	d. Al
· ·		observed microovenhoek c. Mat	•		Hooke d.
			•		Hooke d.
a. Antonie va			•		3
a. Antonie va $\overline{(Q^{\gamma})}$	n Leeuw		•		(1.
a. Antonie va (Q [†]) (A) <u>Define:</u>	on time	enhoek c. Mat	•	den b. Robert I	(1.
a. Antonie va (Q) (A) Define:) Generati) Cardinal	on time	cures	thias Schlei	den b. Robert I	()·
a. Antonie va (Q) (A) Define:) Generati) Cardinal (B) With clear	on time	cures	thias Schlei	t) Microaerophiles) Oligodynamic et	() ·
a. Antonie va (Q) (A) Define:) Generati) Cardinal (B) With clear	on time	cures diagrams; comp	thias Schlei	t) Microaerophiles) Oligodynamic et	() ·
a. Antonie va (Q Y) (A) Define: 1) Generati 7) Cardinal (B) With clear and gram nega (Q Y)	on time temperate labeled tive cell v	cures diagrams; comp	thias Schlei	t) Microaerophiles) Oligodynamic et	ffect m positive
a. Antonie va (Q) (A) Define:) Generati) Cardinal (B) With clear and gram nega (Q) Discuss with ill	on time temperately tive celly	cures diagrams; comp	are and cor	t) Microaerophiles) Oligodynamic entrast between gra	ffect m positive
a. Antonie va (Q 7) (A) Define: 1) Generati 7) Cardinal (B) With clear and gram nega (Q 7) Discuss with ill	on time temperate labeled tive cell ustration	cures diagrams; comp wall of bacteria.	are and cor	t) Microaerophiles) Oligodynamic entrast between gra	ffect m positive
a. Antonie va (Q) (A) Define:) Generati) Cardinal (B) With clear and gram nega (Q) Discuss with ill) Growth) Binary fi	on time temperate labeled tive cell ustration curve of usission in the	cures diagrams; comp wall of bacteria.	are and cor (' mark)	t) Microaerophiles) Oligodynamic entrast between gra	ffect m positive
a. Antonie va (Q 7) (A) Define: 1) Generati 7) Cardinal (B) With clear and gram nega (Q 7) Discuss with ille 1) Growth (1) 7) Binary fi 7) Nutrition	on time temperate labeled tive cell ustration curve of usission in the	cures diagrams; comp wall of bacteria.	are and cor (' mark)	*) Microaerophiles *) Oligodynamic entrast between gra	ffect m positive
a. Antonie va (Q 7) (A) Define: 1) Generati 7) Cardinal (B) With clear and gram nega (Q 7) Discuss with ille 1) Growth (1) 7) Binary fi 7) Nutrition	on time temperate labeled tive cell ustration curve of usission in the	cures diagrams; comp wall of bacteria. s: unicellular microcoacteria. s of microorganis	are and cor (' mark)	*) Microaerophiles *) Oligodynamic entrast between gra	ffect m positive

1 10- Light size seesalhely- city

الفرقة: الثانية

المادة: رياضيات بحته - ر ٢٠١

الدرجة الكلية : ٨٠ درجة

امتحان الفصل الصيفي

الزمن: ساعتان التاريخ: ٨/١٨/ ٢٠١٣

كلية العلوم - قسم الرياضيات

الشعب: ك +ك حيوى +ميكروبيولوجي +ك ونبات +ك وحيوان +جيولوجيا + علوم بيئة

أجب عن الأسئلة الآتية: كل سؤال ٢٠ درجة

[1] أ) ناقش اتصال الدالة الآتية عند النقطة (0,0)

$$f(x,y) = \begin{cases} \frac{3x^2y}{7x^2 + y^2} &, & (x,y) \neq (0,0) \\ 0 &, & (x,y) = (0,0) \end{cases}$$

$$xu_x + yu_y = \sin 2u$$
 فاثبت أن $u = \tan^{-1}(\frac{x^3 + y^3}{x - y})$ با اذا كانت $(x - y)$

[2] أوحد الحل العام للمعادلات التفاضلية

a)
$$(x + y - 1)dx - (3x + 3y + 1)dy = 0$$

b)
$$(x^2 + xy + 3y^2)dx = (x^2 + 2xy)dy$$

$$z=x\ln y$$
 , $x=3u+2v$, $y=uv$ اذا كانت $\frac{\partial z}{\partial u}$ اذا كانت $\frac{\partial z}{\partial u}$

.
$$y(1) = 1$$
 , $y' + \frac{1}{x}y = \frac{1}{x^2}$ ب) أوجد الحل الخاص للمعادلة

وجد قيمة التكامل
$$\int \int (x^2 + y^2) dx dy$$
 حيث R هي المنطقة المحصورة بين الدائرتين R

$$x^2 + y^2 = 16$$
, $x^2 + y^2 = 4$

ب) احسب التكامل الخطى
$$\int xy \, dx + x^2 \, dy$$
 حيث $\int xy \, dx + x^2 \, dy$ الى النقطة (2,1) الى النقطة

.(4,5)

أسرة التدريس

مع أطبب التمنيات بالتوفيق

Mansoura University Faculty of Science Physics Department Summer Exam.

Date: Aug. 2013

Time Allowed: 2 hours

Full Mark: 80 Marks

Subject: Physics

Physical Optics ف 221

Answer the following questions:

1] A) Demonstrate an explanatory diagram of the optical arrangement of Young's experiment of interference. Drive the theory of interference for this experiment.

[18 Marks]

B) When one of the beams of Mach-Zehnder interferometer passes through a wide tunnel of length 20 meters, 200 fringes cross the field of view. Calculate the change in refractive index if the wavelength of light is equal to 5890 A°.

[9Marks]

2] A) Explain with the necessary theory the interference in thin films due to reflected light.

[16 Marks]

B) Explain how you can obtain plan polarized light by reflection.

[11 Marks]

3] A) Discuss Fraunhofer diffraction pattern when using a rectangular slit. Drive and expression for the intensity distribution of observed diffraction pattern.

[20 Marks]

B) Calculate the angular spectrum separation of two D lines of Sodium of wavelengths $5890 \, \text{A}^{\circ}$ and $5896 \, \text{A}^{\circ}$ in the second older spectrum produced by diffraction grating. The light being incident normally on the grating which have $6000 \, \text{lines} / \, \text{Cm}$.

[6 Marks]

Good Luck

Examiner: Prof. Dr. Taha Sokkar

Mansoura University **Faculty of Science Chemistry Department** Subject: Chemistry Course(s): Org. Chem.

Summer Exam Time Allowed: 2 hours Full Mark: 80 Marks Date: 25, 8, 2013

(236)

Answer All Questions

1. Predict the major product(s):

[27 Marks]

i)
$$C=CH_2 + \frac{Br_2}{H_2O}$$
 CH₃

ii)
$$CH_3 - C - CH = CH_2 \xrightarrow{H_2SO_4} CH_3$$

iv) CH₃-CH₂-C=CH₂
$$\frac{i)O_3, CH_2Cl_2 - 78^{\circ}C}{ii)Zn/AcOH}$$

$$CH_{3} \longrightarrow C=CH-CH_{3} \xrightarrow{i)KMnO_{4}, OH, \Delta} \longrightarrow CH_{3}$$

$$CH_{3} \longrightarrow CH_{3}$$

vi)
$$\langle - \rangle$$
 $C \equiv CH \xrightarrow{HBr} \rightarrow$

vii) CH₃CH₂Mg Br + CH₃CHO →

ix) + CH₃ CH₂ CH₂Cl
$$\xrightarrow{AlCl_3}$$

2. A) Outline synthesis of the following compounds from the

indicated starting materials : [9 Marks] CH₃ CCH₃ from CH₃ CHOH

ii) CH₃-C-CH₂ from CH \equiv CH

OH OH

iii) CH₃-CH -CH₂ from CH \equiv CH

OH OH

iii) COCH₃ from

B) List the following radicals in order of their stability:

[6 Marks]

C) Show the effect of NBS / hyon each of theses compounds:

[12 Marks]

3.A) Draw the structures of organic products (A - H) in the following reaction sequences: [16 Marks]

$$CH_{3}-CH = CH_{2} \longrightarrow A \longrightarrow NBS \longrightarrow C$$

$$NBS \longrightarrow hv/CCl_{4} \longrightarrow E$$

$$CH_{3}CH_{2}COCl \longrightarrow F \longrightarrow Zn-Hg/HCl \longrightarrow G \xrightarrow{i)KMnO_{4},OH,\Delta} H$$

B) On chlorination n-butane it was found that reactivity ratio between 1°: 2° H – atoms is 1: 2.5 Calculate the percentage of each isomer [10 Marks]

Mansoura University Faculty of Science Zoology Department

Subject: Functional Morphology (Z 203)

Date: 22/8/2013Time Allowed: 2 hours

Final examination (August, 2013) for 2nd level students, programes Chemistry/Zoology&Chemistry/Botany&Ecology&Microbiology

Answer all the following questions

First question:

- a) Define each of the following terms: [15 Mark]
 - 1- Tidal volume.
 - 2- Blood pressure.
 - 3- Vitamins.
 - 4- Glycolysis.
 - 5- Proteins.

Second question:

- a) Write short notes on each of the following subjects: [15 Mark]
 - 1- Heart valves.
 - 2- Conversion of glucose into glycogen.
 - 3- Pancreatic enzymes and their roles in food digestion.

Third question:

- a) Write on the following: [6 Marks]
 - 1- Kidney functions.
 - 2- The difference between the cardiac and the smooth muscle.
- b) Discuss three only of the following: [9 Marks]
 - 1- Hyperglycemia.
- 2- Hyperthyroidism.
- 3- Hyperparathyroidism. 4- Homeostasis.

Fourth question:

- a) Compare between anterior and posterior lobe of the pituitary gland. [5 Marks]
- b) Write on the components of the nervous system. [5 Marks]
- c) Illustrate skeletal muscle structure. [5 Marks]

مع تمنياتنا لكم بالتوفيق

د./ هناء سراج

د/فريد عبد القادر

Mansoura University Faculty of Science Botany Department El-Mansoura, Egypt

جامعة المنصورة كلية العلوم قسم النبات المنصورة ـ مصر

Educational Year: Second Level

Final Examination in

Subject: Botany

Botany

Course: General Microbiology

Summer Term: August

Program: Biology Programs

7.17

Code: B ۲. ٤

Time: 7 hours

Date: Y · / \/Y · 17

Full Mark: 7.

Question Mark: Y.

Answer the following questions:

(Q1)

(A) Complete the missing parts:

(V mark)

- 1) Microbial growth could be determined directly using......and indirectly by......
- Activities of microorganisms may be harmful as.....or beneficial as.....
- •) ...is one of the sterilization methods that removes microorganisms rather than killing them.
- 7) Chemical substance that can be added to microbiological nutrient media and changing their physical properties is called......
- V) Microbiology is the branch of science that studies.....

(B) <u>True or false (Circulate T or F letters) and correct the false statement(s)</u>: (Y mark)

- 1) (T-F) Living organisms are classified into two domains according to Woese system of classification.
- Y) (T-F) Streak-plate method is used for enumeration of microorganisms.
- (T-F) Glycocalyx is one of the cell wall external structures.
- (T-F) Some components of the chemically defined media are of known exact formula.
- ^o) (T F) Carbon is the most macronutrients required by microorganisms.
- () (T-F) Osmotolerant microorganisms can survive in high salt concentrations.

إ تابع بقية الاسئلة في الخلف

(C)	Choose	the	correct	answer:			
(mark)	C - C - 11	I I I		1	• 0		
		_	_	lehydration of a bacte	rium? I. Plasma membrane		
		apsule		Iurein layer d ermining the number			
	eria per ml?	ing is most	10114010 101 401		or videre		
	a. Turbidity r	neasuremer	nt	b. Direct micro	scopic count		
	c. Weighing t			d. None of the above			
۳) In ob	0 0		eroxide dismu	tase and catalase worl	k together		
	nvert the super	_					
	drogen b. Hy			Oxygen and water	d. Ozon		
		_		d juices is called			
a. F	iltration	b. Tyndal	llization	c. Pasteurization	d. All		
•) The m	nicrobial divers	ity was illus	trated in				
a	. Shape	b. 9	Size	c. Structure	d. All		
The fi	irst person who	observed m	icroorganisms	was			
a. Anto	nie van Leeuw	enhoek c.	Matthias Sch	leiden b. Robert	Hooke d. None		
(Q^{γ})							
(A) Defin	ie:				('· mark)		
1) Ge	eneration time) Microaerophile	S		
۳) Ca	rdinal temperat	tures		(a) Oligodynamic	effect		
(B) With	clear labeled	diagrams; d	compare and	contrast between gr	am positive		
and gram	negative cell	wall of bact	eria. (' mai	·k)			
(Q ^r)							
Discuss w	ith illustration	ıs:		(Y • m	ark)		
1) Gr	owth curve of t	unicellular n	nicroorganisms	S			
Y) Bir	nary fission in	oacteria.					
۳) Nu	ıtritional classe	s of microor	ganisms.				
٤) Dis	scuss the physi	cal methods	of microbial g	rowth control.			
Examine	ers:						
CAPSE TO THE TOTAL OF			-	D- Ch-l-C - 1	EINV-C-		
Ass. Pro	of. Dr. Mervat	H. Hussein	,	Dr. Ghada Samir Ab	ou-Elwaia		

Mansoura University Faculty of Science Botany Department El-Mansoura, Egypt

جامعة المنصورة كلية العلوم قسم النبات المنصورة ـ مصر

Final Examination in Botany Summer Term: August. 2013

	Educational Year: Second level Program (Branch): Biology (Chemistry-Botany/Microbiology/Chemistry-Zoology/Environmental sciences) Subject: B (202) Courses: Plant Metabolism Time: 2 hrs Date: 22 /8 /2013 Full mark: 60 Part mark: 30 Answer the following questions:
	Part I
A	Write on: (20 mark)
	1- Starch biosynthesis. (5 marks)
	2- Calvin cycle. (10 marks)
	3- Glycolysis. (5 marks)
В	Put true or false and correct the false sentences: (10 marks; 1 mark each)
	1- Mesophyll cells have many chloroplasts which contain the specialized light-
	absorbing yellow pigments, the chlorophylls. ()
	2- The higher the light wavelength the lower the energy content of the photon. ()
	3- Light dependent reactions takes place in the stroma of the chloroplast. ()
	4- Different stages of aerobic respiration occur only in the mitochondrion. ()
	5- In oxidative phosphorylation FADH ₂ yields 2 ATP molecules. ()
	6- All the enzymes involved in Kresbs cycle occur in the matrix of the mitochondria
	except succinate dehydrogenase enzyme. ()
	7- The general molecular formula of monosaccharides is (CH ₂ O ₂) _n . ()
-	8- Lactose consists of glucose + fructose. ()
	9- Under anaerobic condition, pyruvate breakdown into methanol and CO ₂ .
	10- Starch is a mixture of amylose and amylopectin. ()

P.T.O

من فضلك اقلب الصفحة

Part II

A	Exp	lam	the following: (20 marks; each of 5 marks)	
		1-	Transcription step in protein synthesis.	
		2-	Amino acid catabolism.	
		3-	Biosynthesis of triacylglycerol by Kennedy pathway.	
		4-	Fatty acid biosynthesis.	
В	Con	anlo	ata tha followingtancase (5 mayles 1 mayle agab)	
D	Con	ibie	ete the following zentences: (5 marks; 1 mark each)	
		1-	Fats and oils are made from two components and	
		2-	Glyoxylate cycle occur in	
		3-	Nitrogen bases in DNA was,, and	,
		4-	Start codon on mRNA is	
		5-	Definition of saturated fatty acid	
C	Put	rigl	nt or wrong and correct the wrong sentence: (5 marks; 1	***************************************
	mar	k ea	ach)	
	1	- A	n amino acid may have more than one codon. ()	
	2	- T	he tail of fatty acids is a long hydrocarbon chain which is	
		hy	ydrophilic. ()	
	3	- C	hains containing less than 50 amino acids are called proteins, while	;
		th	ose containing greater than 50 amino acids are called peptides. ()
	4	- In	itiation, elongation and termination are three stages in the	
		tra	anslation step of protein synthesis. ()	
	5	- R	ibosome has three sites for tRNA attachment. ()	
Exa	amine	rs:	Prof. Heshmat S. Aldesuquy Prof. Wafaa M. Shukry	
			Dr. Rasha M. E. Gamel Dr. Amany M. Kazamel	

