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Abstract 

Interval oscillation criteria are established for a second-order functional dynamic 
equation of Emden-Fowler type with oscillatory potential by applying Riccati and 
generalized Riccati techniques. The results represent further improvements on those 
given even for differential and difference equations. Some examples are considered to 
illustrate the main results.  
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Abstract 
We will prove some new Opial dynamic inequalities involving higher order 
derivatives on time scales. The results will be proved by making use of Holder's 
inequality, a simple consequence of Keller's chain rule and Taylor monomials on time 
scales. Some continuous and discrete inequalities will be derived from our results as 
special cases.  
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Abstract 
We will prove some new dynamic inequalities of Opial's type on time scales. The 
results not only extend some results in the literature but also improve some of them. 
Some continuous and discrete inequalities are derived from the main results as special 
cases. The results can be applied on the study of distribution of generalized zeros of 
half-linear dynamic equations on time scales.  
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Abstract 
For a fourth-order differential equation, we will establish some new Lyapunov-type 
inequalities, which give lower bounds of the distance between zeros of a nontrivial 
solution and also lower bounds of the distance between zeros of a solution and/or its 
derivatives. The main results will be proved by making use of Hardy's inequality and 
some generalizations of Opial-Wirtinger-type inequalities involving higher-order 
derivatives. Some examples are considered to illustrate the main results.  
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We will prove some new dynamic inequalities of Opial's type on time scales. The 
results not only extend some results in the literature but also improve some of them. 
Some continuous and discrete inequalities are derived from the main results as special 
cases. The results will be applied on second-order half-linear dynamic equations on 
time scales to prove several results related to the spacing between consecutive zeros 
of solutions and the spacing between zeros of a solution and/or its derivative. The 
results also yield conditions for disfocality of these equations.  
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