جامعة المنصورة كالية العلوم قسم: الرياضيات ## توصیف مقرر دراسی | | | ١- بيانات المقرر | | |-----------------|--|-----------------------|--| | المستوى: الثالث | اسم المقرر : | كود المادة : Math 319 | | | السوق الت | Number Theory | Watti 519. | | | ین: ۲ عملی: ۰ | عدد الوحدات الدراسية: ٣ ساعة معتمدة نظرى ٢: تمار | التخصص: رياضيات | | | students undertaking this course, the aims are to: | | |--|--| | Revise the basic concepts of number theory. Learn some central themes of elementary number theory, and its relationship to algebraic number theory Foster an appreciation of the extent, importance, utility and beauty of number theory, and of the historical contexts Develop mathematical skills, particularly those associated with proof. | ٢- هدف المقرر: | | ﻣﻘﺮﺭ: | ٣- المستهدف من التدريس ال | | a- Knowledge and Understanding | | | On completing this course, students will be able to: | | | a1- Have a complete understanding of the division algorithm. | | | a2- Understand and be able to use Euclid's algorithm, continued fractions. | أ المعلومات والمفاهيم: | | a3- Understand Prime numbers and Fundamental Theorem of Arithmetic. | | | a4- Explane Diophantine equations and Fermat's last theorem. | | | b- Intellectual Skills | | | On completing this course, students will be able to: | | | b1- Be familiar with common arithmetic functions and their expressions in terms of | | | prime factors; | ب- المهارات الذهنية | | b2- Be aware with the definition of a multiplicative function and how new | | | multiplicative functions can be made up from others by summing over divisors. | | | b3- Improve ability to solve mathematical problems. | | | c- Professional and Practical Skills | ج- المهارات المهنية
الخاصة بالمقرر: | | On completing this course, students will be able to: | | |--|---| | c1- Be able to solve appropriate problems involving congruencies and modular | | | arithmetic | | | c2- Improve ability to read mathematics texts. | | | c3- Develop skills in independent study and to foster a reflective and self- analytical approach to learning | | | d-General and Transferable Skills: | | | On completing this course, students will be able to: | | | d1- Encourage the students to express them selves in the class and to present their views | | | d2- Work effectively in a group and independently. | د- المهارات العامة: | | d3- Improve ability to communicate mathematics, both orally and in writing. | | | d4- Improve student's ability to think logically, analytically, and abstractly. | | | 1- Fundamentals: The division algorithm, The Euclidean algorithm, Diophantine equations, The Chinese Remainder Theorem. | | | 2- Prime numbers and their Distribution :The infinitude of primes, The fundamental theorem of arithmetic and unique factorization domains(viz "algebraic number theory"), Dirichlet's theorem. | | | 3-Theory of Congruencies: Congruence, Linear congruencies, Modular arithmetic and multiplicative inverses, Fermat's Factorization, Fermat's little theorem. Wilson's theorem, | | | 4- Euler's generalization of Fermat's Theorem, Euler's phi-unction. Euler's theorem | ٤- محتوى المقرر: | | 5- Primitive roots, order and indices Primitive Roots of Primes, Composite Numbers Having Primitive Roots, The Theory of Indices. | | | 6- Number Theoretic Functions, Multiplicative Functions, The Mobius Inversion Formula | | | 7- Introduction to algebraic number Theory, Ring of integers, ideals, Galois theory, Decomposition laws. | | | 8- Continued Fractions: introduction-Solving Diophantine equations using continued Fractions. | | | 1- Lectures 2- Tutorials | ٥- اساليب التعليم والتعلم: ٦- أساليب التعليم والتعلم | | The same as normal students, only skeletal disabilities are allowed in the | ٦- أساليب التعليم والتعلم | | Faculty of Science. | | | للطلاب ذوى القدرات
المحدودة: | |------------------------------|----------------|------------------------------------|---| | | | | ٧- تقويم الطلاب: | | 1- Final exam | to assess | a1-a4, b1-b3,c1-c3 | | | 2- Oral exam | to assess | a1-a4, b1-b3,d1-d3 | أ- الأساليب المستخدمة: | | 3- Mid-Term Exam | to assess | a1,a3,a4, b1-b3, c1-c3 | | | 1- Final exam week | 16 | | | | 2- Oral exam week | 16 | | ب- التوقيت : | | 3- Mid-Term Exam | week | 6 | | | - Mid-Term Examination | 10% | | | | - Final-Term Examination | 80% | | | | - Oral Examination | 10% | | ج- توزيع الدرجات : | | - Practical Examination | 0 | | | | Total 10 | 00% | | | | | | | ١- قائمة الكتب الدراسية والمراجع: | | | | | أ_مذكرات: | | G.H. HARDY and E.M.WRIGHT | (1975) An Intr | oduction to the theory of Numbers. | ب۔ کتب ملزمة | | David M. Burton (2005) Eleme | ntary Number | Theory, William Brown Publ. | ج- كتب مقترحة : | | http://www.liv.ac.uk/maths/ | PURE/wipm.h | <u>tml</u> | د- دوريات علمية أو | | http://www.archive.org/deta | nils/coursepur | emath00hardrich | نشرات. | ## (أ) مصفوفة المعارف والمهارات المستهدفة من المقرر الدراسى | المحتويات للمقرر | اسبوع
الدراسة | المعارف
الرئيسية | مهارات
ذهنية | مهارات
مهنیة | مهارات
عامة | |--|------------------|---------------------|-----------------|-----------------|----------------| | Fundamentals: The division algorithm, The Euclidean algorithm, Diophantine equations, The Chinese Remainder Theorem. | 1-2 | a1,a3,
a4 | b1-b3 | c1-c3 | d1-d4 | | Prime numbers and their Distribution: The infinitude of primes. The fundamental theorem of arithmetic and unique factorization domains (viz "algebraic number theory"), Dirichlet's theorem. | 3-4 | a3 | b1-b3 | c1-c3 | d1-d4 | | Theory of Congruencies:Congruence, Linear congruencies. Modular arithmetic and multiplicative inverses. Fermat's Factorization. Fermat's little theorem. Wilson's theorem. | 5-6 | a4 | b1-b3 | c1-c3 | d1-d4 | | Euler's generalization of Fermat's Theorem Euler's phi-
unction. Euler's theorem. | 7-8 | a3,a4 | b1-b3 | c1-c3 | d1-d4 | | Introduction to algebraic number Theory. Ring of integers, ideals. Decomposition laws. | 9-11 | a4 | b1-b3 | c1-c3 | d1-d4 | | Continued Fractions: introduction-Solving Diophantine equations using continued Fractions. | 12-14 | a2 | b1-b3 | c1-c3 | d1-d4 | أستاذ المادة: رئيس مجلس القسم العلمى: أ.د. مجدى إلياس فارس