

Mansoura University

**Faculty of Computers and Information Sciences** 



# Course Specifications of

## **Probability Theory and Statistical Distributions (1) – UN112ST – 2017/2018**

| University: Mansoura University     | Faculty: Computer and Information Science |  |  |  |  |
|-------------------------------------|-------------------------------------------|--|--|--|--|
| Program on which the course is give | en: General – First Year                  |  |  |  |  |
| Department offering the course:     | Department of Computer Science            |  |  |  |  |
| Academic year/ Level: 2017-2018     | 3 – First Year                            |  |  |  |  |
| Date of specification approval:     |                                           |  |  |  |  |

## **A- Basic Information**

| Title :  | Introduc | ction to | o Probability a | Code: UN112ST |            |   |             |   |
|----------|----------|----------|-----------------|---------------|------------|---|-------------|---|
| Credit H | Iours :  | 3        | Lecture :       | 2             | Tutorial : | 2 | Practical : | 0 |

# **B-Professional Information**

## **1-** Overall Aims of the Course

This course aims to:

- Build a main background and knowledge in probability and statistics and their fields
- Apply some probability and statistics theories and principles to practical and theoretical problems.
- Use key theoretical tools to explore properties of discrete and continuous random variables.
- Understand the basic steps of experiment design and process

- Derive different statistic summarization measurements and graph representations for data.
- Introduce the concepts of statistical interference (Hypothesis and Estimation) and how it could be applied.

## 2- Intended Learning Outcomes of the course (ILOs)

By completing this course successfully, the student will be able to:

#### a- Knowledge and Understanding

- a1. Essential facts, concepts, principles and theories relating to computing and information and computer applications as appropriate to the program of study.
- a12. Understand the essential mathematics relevant to computer science.
- a14. Demonstrate basic knowledge and understanding of a core of analysis, algebra, applied mathematics and statistics.

#### **b-** Intellectual Skills

- b12. Perform classifications of (data, results, methods, techniques, algorithms..etc.).
- b16. Establish criteria, and verify solutions.

## c- Professional and Practical Skills

#### d- General and Transferable Skills

**d1** Demonstrate the ability to make use of a range of learning resources and to manage one's own learning.

#### **3-** Contents

| No | Course Content                                                                                                                                       | Lecture | Tutorial | Total |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|-------|
| 1  | Introduction to Probability and Statistics and their<br>Applications, Combinatorial Analysis: Counting,<br>permutation, combination, multiple events | 2.0     | 2.0      | 4.0   |
| 2  | Introduction to the Concepts and Practice of Statistics,<br>Data Types, Measurement level, Sampling Methods                                          | 1.0     | 1.0      | 2.0   |
| 3  | Statistic Process, Experimental Design, Blind<br>Experiment                                                                                          | 2.0     | 2.0      | 4.0   |
| 4  | Descriptive Statistics (Mean, Mode, Median, Variance,                                                                                                | 1.0     | 1.0      | 2.0   |

|   | Standard Division, Percentiles, Quartiles, Range,)                                                                                                                        |     |     |     |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|
| 5 | Frequency Tables, Graphical Representations.<br>Confusion Matrix, Correlation Coefficients, Regression<br>Coefficients                                                    | 2.0 | 2.0 | 4.0 |
| 6 | Midterm Exam                                                                                                                                                              |     |     |     |
| 7 | Concepts of Probability, Axioms, Conditional<br>Probability, Contingency table, Bayesian theorem                                                                          | 2.0 | 2.0 | 4.0 |
| 8 | Discrete Random Variable, Discrete random Variable<br>Distribution, Continuous Random variable, Continuous<br>Random Variable, Continuous Random Variable<br>Distribution | 2.5 | 2.5 | 5.0 |
| 9 | Statistical Inference                                                                                                                                                     | 1.5 | 1.5 | 3.0 |
|   |                                                                                                                                                                           |     |     |     |
|   | Total Hours                                                                                                                                                               | 14  |     |     |

## 4- Assessment Schedule

| Assessment Method | No. | Description    | Week No. | Weight (%) |
|-------------------|-----|----------------|----------|------------|
| Assignment        | 1   | Sheet no. 1, 2 | 4, 11    | 4.00%      |
| Written Exams     | 2   | Midterm Exam   | 7        | 13.00%     |
| Quiz              | 3   | Quiz           | 3, 9     | 4.00%      |
| Term project      | 4   | Program        | 13       | 4.00%      |
|                   |     | Assignment     |          |            |
| Written Exams     | 5   | Final Exam     | 14       | 75.00%     |
|                   | 100 |                |          |            |

## **5-** List of references

## **5.1 Course Notes**

- Slides delivered to students at the end of some lectures.

## 5.2 Essential Books (Text Book)

- Michael Sullivan, Statistics: Informed Decisions Using Data, Pearson, 3rd Edition, 2013
- Sheldon Ross A FIRST COURSE IN PROBABILITY, Eighth Edition, Prentice Hall, 2010
- Statistics for Business and Economics, Eight Edition,
- Dekking et al. A Modern Introduction to Probability and Statistics. 2007

# 6- Facilities Required for Teaching and Learning

- Data show.
- Blackboard.
- Speakers for audio and video files used to practice listening.

|                                                                                                                                                                              | 1116 |     | <b>`</b> | 1   |            |           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|----------|-----|------------|-----------|
| Course Content                                                                                                                                                               | a1   | a12 | a14      | b12 | <b>b16</b> | <b>d1</b> |
| Introduction to Probability and Statistics<br>and their Applications, Combinatorial<br>Analysis: Counting, permutation,<br>combination, multiple events                      | •    | •   | •        |     |            | •         |
| Introduction to the Concepts and Practice<br>of Statistics, Data Types, Measurement<br>level, Sampling Methods                                                               |      |     | •        | •   |            |           |
| Statistic Process, Experimental Design,<br>Blind Experiment                                                                                                                  |      |     | •        | •   | •          | •         |
| Descriptive Statistics (Mean, Mode,<br>Median, Variance, Standard Division,<br>Percentiles, Quartiles, Range,)                                                               | •    | •   | •        |     |            |           |
| Frequency Tables and Graphical<br>Representations<br>Correlation Coefficients, Regression<br>Coefficients                                                                    | •    | •   | •        |     |            |           |
| Concepts of Probability, Axioms,<br>Conditional Probability, Contingency<br>table, Bayesian theorem                                                                          |      |     |          |     |            | •         |
| Discrete Random Variable, Discrete<br>random Variable Distribution, Continuous<br>Random variable, Continuous Random<br>Variable, Continuous Random Variable<br>Distribution |      | •   | •        | •   |            |           |
| Statistical Inference                                                                                                                                                        | •    | •   | •        | •   | •          |           |

## **Course Content/ILO Matrix**

| Learning | <b>Method/ILO Matrix</b> |
|----------|--------------------------|
|----------|--------------------------|

| <b>Course Content</b> | a1 | a12 | a14 | b12 | b16 | <b>d1</b> |
|-----------------------|----|-----|-----|-----|-----|-----------|
| Lectures              | •  | •   | •   | •   | •   | •         |
| Tutorials             | •  | •   | •   | •   | •   |           |

## **Assessment Methods/ILO Matrix**

|              | a1 | a12 | a14 | b12 | b16 | <b>d</b> 1 |
|--------------|----|-----|-----|-----|-----|------------|
| Assignment   |    |     | •   | •   |     | •          |
| Midterm Exam | •  | •   | •   | •   | •   | •          |
| Quizzes      |    |     | •   | •   | •   |            |
| Term project |    |     | •   |     |     | •          |
| Final Exam   | •  | •   | •   | •   | •   | •          |

Course Coordinator:Prof. Samir ElmougyHead of Department:Prof. Samir ElmougyDate:3/3/2018