

Mansoura University Faculty of Computers and Information Sciences

Department of Computer Science- Third year

Department of Computer Science

Course Specifications of

Logic programming – CS313P – 2017/2018

University: Mansoura University Faculty: Computer and Information Sciences

Program on which the course is given:

Department offering the course:

Academic year/ Level: Third Year

Date of specification approval:

A-Basic Information

Title :	Logic pi	ogra	mming	Code :	CS313P			
Credit H	Iours :	3	Lecture :	1	Tutorial :	Practical :		

B-Professional Information

1- Overall Aims of the Course

This course aims to:

- Formalizes students with the logic programming paradigm and its programming techniques.
- Allow students to formalize logical natural language senesces and convent it to logical models.
- Allow students to apply reasoning procedures for several logic languages.
- Students should be familiar with the declarative style of programming languages

2- Intended Learning Outcomes of the course (ILOs)

By completing this course successfully, the student will be able to:

a- Knowledge and Understanding

- a1. Essential facts, concepts, principles and theories relating to computing and information and computer applications as appropriate to the program of study.
- a3. Tools, practices and methodologies used in the specification, design, implementation and evaluation of computer software systems.
- a13. Understand the essential mathematics relevant to computer science.
- a14. Use high-level programming languages.

b- Intellectual Skills

- b1. Analyze computing problems and provide solutions related to the design and construction of computing systems.
- b2. Realize the concepts, principles, theories and practices behind computing and information as an academic discipline.
- b4. Analyze, propose and evaluate alternative computer systems and processes taking into account limitations, and quality constraints.
- b5. Make ideas, proposals and designs using rational and reasoned arguments for presentation of computing systems.
- b10. Define traditional and nontraditional problems, set goals towards solving them, and. observe results.
- b11. Perform comparisons between (algorithms, methods, techniques...etc).
- b13. Identify attributes, components, relationships, patterns, main ideas, and errors.
- b14. Summarize the proposed solutions and their results.
- b16. Establish criteria, and verify solutions.
- b17. Identify a range of solutions and critically evaluate and justify proposed design solutions.

c- Professional and Practical Skills

c1. Operate computing equipment, recognizing its logical and physical properties, capabilities and limitations.

d- General and Transferable Skills

d1. Demonstrate the ability to make use of a range of learning resources and to manage one's own learning.

3- Contents

No	Course Content	Lecture	Tutorial	Total
1	Introduction to the fundamental concepts of			
	Human Logic ,Reasoning types, and Logic	2	2	4
	Applications			
2	Propositional logic and it's reasoning procedures	4	4	8
3	First order logic and it's reasoning procedures	6	6	12
4	Reasoning based on resolution principle	4	4	8
5	Introduction to the fundamental concepts of			
	declarative programming language	2	2	4
6	Prolog programming language and it's applications	6	6	12
	Total Hours	24	24	48

4- Assessment Schedule

Assessment Method	No.	Description	Week No.	Weight (%)							
Assignment	1	Home work no. 1	3	10							
Written Exams	2	Midterm Exam	7	10							
Assignment	3	Home work no. 2	8	10							
Oral Exam	4	Oral questions	10	10							
Written Exams	5	Final Exam	14	60							
	Total										

5- List of references

5.1Course Notes

- Lecture handouts delivered to students at the end of each lecture.

5.2Essential Books (Text Books)

- Introduction to Logic, Second Edition, Michael Genesereth,
- Prolog Programming A First Course, Paul Brna

6- Facilities Required for Teaching and Learning

- Data show.

Course Content/ILO Matrix

Course Content	a1	a3	a13	a14	b1	b2	b4	b5	b10	b11	b13	b14	b16	b17	c1	d1
Introduction to the																
fundamental concepts																
of Human Logic	•	•				٠									•	
,Reasoning types, and																
Logic Applications																
Propositional logic																
and it's reasoning		•	•	•				٠	•			٠	٠			•
procedures																
First order logic and																
it's reasoning		•	•	•				•	•			٠	•			•
procedures																
Reasoning based on		•	•	•				•	•			•	•			•
resolution principle		•						•				•	•			
Introduction to the																
fundamental concepts																_
of declarative	•	•		٠	٠	٠	٠		•	٠	٠			•	•	•
programming																
language																
Prolog programming																
language and it's	•	•		•	•	•	•		•	•	•		•	•	•	•
applications																

Learning Method/ILO Matrix

Course Content	a1	a3	a13	a14	b1	b2	b4	b5	b10	b11	b13	b14	b16	b17	c1	d1
Lectures	•	•	٠	•	•	•	•	٠	•	•	•	•	•	•	•	•
Tutorials			•	•	•	•	•	٠	٠	•	•	•	•	•	٠	•

Assessment Methods/ILO Matrix

Assessment	a1	a3	a13	a14	b1	b2	b4	b5	b10	b11	b13	b14	b16	b17	c1	d1
Assignment			•	•				•	•	٠	•	•	٠	•	•	•
Midterm Exam	•	•	•	•	•	•	•	•					٠	•		
Oral exam	•	•		•		•		•		•	•		•	•		
Final Exam	•	•	•	•	•	•	•	•	•					•		

Course Coordinator: Dr. Taher Hamza Dr. Eslam Foad Head of Department: Dr. Samir Elmogy Date: