

Mansoura University Faculty of Computers and Information Sciences

Course Specifications of

Knowledge Based Systems to Computer Science – CS011 – 2017/2018

University: Mansoura University Faculty: Computer and Information Sciences
Program on which the course is given:
Department of Computer Science
Academic year/ Level: Fourth Year
Date of specification approval:
A-Basic Information

Title: Knowledge Based Systems Code: UNI111T

Credit Hours: 3 Lecture: 2 Tutorial: 2 Practical: 0

B-Professional Information

1- Overall Aims of the Course

This course aims to:

- This course introduces students to learn how to build expert systems in a variety of application areas.
- Learn the student how knowledge Engineer select the software and hardware tools for the project, extract the necessary knowledge from the Domain Expert and implement the knowledge in a correct and efficient knowledge base.

2- Intended Learning Outcomes of the course (ILOs)

By completing this course successfully, the student will be able to:

a- Knowledge and Understanding

- a1 Essential facts, concepts, principles and theories relating to computing and information and computer applications as appropriate to the program of study.
- a2 Modeling and design of computer-based systems bearing in mind the trade-offs.
- Tools, practices and methodologies used in the specification, design, implementation and evaluation of computer software systems.
- a4 Criteria and specifications appropriate to specific problems, and plan strategies for their solution.
- a6 The current and underlying technologies that support computer processing and inter-computer communication.
- a13 Use high-level programming languages.
- a16 Know and understand the principles and techniques of a number of application areas informed by the research directions of the subject, such as artificial intelligence, natural language processing, data mining, databases and computer graphics.
- a19 Select advanced topics to provide a deeper understanding of some aspects of the subject, such as hardware systems design, object-oriented analysis and design, and artificial intelligence, and parallel and concurrent computing

b- Intellectual Skills

- Analyze computing problems and provide solutions related to the design and construction of computing systems.
- Realize the concepts, principles, theories and practices behind computing and information as an academic discipline.
- Analyze, propose and evaluate alternative computer systems and processes taking into account limitations, and quality constraints.
- Make ideas, proposals and designs using rational and reasoned arguments for presentation of computing systems.
- b11 Perform comparisons between (algorithms, methods, techniques...etc).
- b12 Perform classifications of (data, results, methods, techniques, algorithms..etc.).
- b13 Identify attributes, components, relationships, patterns, main ideas, and errors.
- b14 Summarize the proposed solutions and their results.
- b15 Restrict solution methodologies upon their results.
- b18 Solve computer science problems with pressing commercial or industrial

- constraints.
- b19 Generate an innovative design to solve a problem containing a range of commercial and industrial constraints.

c- Professional and Practical Skills

- c2 Implement comprehensive computing knowledge and skills in projects and in deployment of computers to solve position practical problems.
- c4 Apply computing information retrieval skills in computing community environment and industry.
- c5 Develop a range of fundamental research skills, through the use of online resources, technical repositories and library-based material
- c10 Communicate effectively by oral, written and visual means.
- c14 Prepare technical reports, and a dissertation, to a professional standard; use IT skills and display mature computer literacy.
- c17 Apply the principles of effective information management, information organization, and information-retrieval skills to information of various kinds, including text, images, sound, and video.
- c21 Prepare technical reports, and a dissertation, to a professional standard.

d- General and Transferable Skills

3- Contents

No	Course Content	Lecture	Tutorial	Total
1	Introduction to: knowledge based expert systems,			
	conventional programming versus knowledge	4	4	8
	engineering.			
2	Human problem solving: Human knowledge			
	Acquisition - the production system as a processing	4	1	8
	model - problem solving - varieties of knowledge -	7	7	O
	the nature of expertise.			
3	Knowledge Representation issues.	2	2	4
4	Strategies for representing knowledge: Using	2	2	1
	Predicate Logic - Resolution in Predicate Logic.	4	4	4
5	representing knowledge: Using Rules - Forward	2.	2.	1
	and Backward Reasoning.	4	4	4
6	representing knowledge: Using Semanic network.	2	2	4
7	representing knowledge: Using Frames.	2	2	4
8	Uncerainty - Symbolic Reasoning under	2	2.	
	Uncerainty.	4	4	4
9	Languages and tools: Levels of soaftware, AI	2	2	1
	language and environments.	2	2	4
10	Building Expert Systems in CLIPS.	2	2	4
	Total Hours	24	24	48

4- Assessment Schedule

Assessment Method	No.	Description	Week No.	Weight (%)						
Home work weekly	1	Home work	3	5						
in the Computer Lab		weekly in the								
		Computer Lab								
Practical Exam	2	Practical Exam	7	5						
Oral Exam and	3	Oral Exam and	10	10						
discussion to the		discussion to the								
Term project		Term project								
Mid Term Exam	4	Mid Term Exam	14	20						
Final Term Exam	5	Final Term Exam		60						
	Total									

5- List of references

5.1 Course Notes

- An Introduction to Expert Systems (Knowledge Base)

5.2 Essential Books (Text Books)

- DAN W. PATTERSON, "Artificial Intelligence an Expert Systems " 2004.
- Peter Jackson, "Introduction to Expert Systems".
- Robert I. Levine, "A Comprehensive Guide to AI and Expert Systems".

6- Facilities Required for Teaching and Learning

- Data show.
- Speakers for audio and video files used to practice listening.

Course Content/ILO Matrix

Course Content	a1	a3	a6	b1	b2	b4	c2	c4	c5	c13
Introduction to:										
knowledge based										
expert systems,										
conventional		•		•	•	•	•			•
programming versus										
knowledge										
engineering.										
Human problem										
solving: Human										
knowledge										
Acquisition - the										
production system as a										
processing model -										
problem solving -										
varieties of knowledge										
- the nature of										
expertise.										
Knowledge										
Representation issues.	•		•					•		

	,	,								
Strategies for										
representing										
knowledge: Using	•		•	•				•		•
Predicate Logic -										
Resolution in										
Predicate Logic.										
representing										
knowledge: Using										
Rules - Forward and										
Backward Reasoning.										
representing										
knowledge: Using			•		•			•		
Semanic network.										
representing										
knowledge: Using		•		•		•	•		•	
Frames.										
Uncerainty - Symbolic										
Reasoning under							•		•	
Uncerainty.										
Languages and tools:										
Levels of soaftware,										
AI language and										
environments.										
Building Expert										
Systems in CLIPS.								•		

Learning Method/ILO Matrix

Course Content	a1	a3	a6	b1	b2	b4	c2	c4	c5	c13
Lectures	•	•	•	•	•	•	•	•	•	•
Tutorials					•	•	•	•	•	•

Assessment Methods/ILO Matrix

Assessment	a1	a3	a6	b1	b2	b4	c2	c4	c5	c13
Assignment	•	•	•					•		•
Midterm Exam	•	•	•	•	•	•	•		•	
Oral exam	•	•	•					•	•	•
Final Exam	•	•	•	•	•	•	•		•	

Course Coordinator: Dr. Magdi Zakaria
Head of Department: Dr. Samir ElMougy

Date: