Mansoura University Faculty of Science **Geology Department**

Date: 3/1/2016 Time: Two Hours

First term Exam 2015L2016 Subject: Optical Mineralogy and Rock Forming Minerals (こうどう

Second Program Geology Total Marks: 60 Marks

	First Part- OPT	ICAL MINERALOGY	
Answ	er the following questions:	,	(10 Marks for each)
1-	Draw the followings : a- Behaviour of light in Nicol pricc- Critical Angle & Total Reflection		ation of Becke line.
2-	Write in detail on the followings :- a- Pleochroism.	b- Twinkling	c- Extinction
3-	Describe in detail the followings : a- Double Refraction	b- Interference Colou	rs c- Relief
	Second Part-	ROCK-FORMING MI	NERALS
Answ	er the Following Questions;		(15 Marks for each)
1- Cor	nplete the following;		(5 Marks for each)
i- The	General Chemical Formula of Silic	ate Minerals	, and give
	bols explanation X=, Y=		
ii- Silio	i- Silicate minerals classification with example of related minerals is		
iii- Ger	ii- General chemical formula of amphibole minerals is and the		
para	agenesis of hornblende is	· · · · · · · · · · · · · · · · · · ·	*
iv- The	e varieties of alkali feldspars and it	s paragenesis are	, also the
vari	eties of plagioclase feldspars and	its paragenesis are	
2- Ans	swer with X or $$ and give the ap	propriate correction.	(2 Marks for each)
	a minerals are like biotite, muscov nstone.	ite, chlorite and serpe	ntinite and used as
ii- Oliv	ine minerals like forsterite and did	opside occur in dunite	and basalt.
	oxene minerals are 1- ortho-pyroxoxene like augite and diopside.	ene like enstatite, aeg	girine and clino-
iv- Ion	ic radius and charge control the ic	nic substitution.	

v- SiO₂ polymorphic group are like quartz varieties, plagioclase and K-feldspars.

Mansoura University

First Term, 2015-2016

Faculty of Science

January, 2016

Physics Department

Geophysics, 2nd Level

Time: 2 hours.

Vibrations & Waves, (Ph. 229)

Full Mark: 60 Marks

Answer the following Questions:

1. a)	Study the critical damped oscillations in an electrical system	10 Marks
b)	Find the wavelength and the velocity of a wave given in two directions by: $\varphi = 9 \sin(3 x + 4 y - 2t)$.	10 Marks
2. a)	Mass of 5 kg is attached with spring has k=500 dyne / cm. After it has the equilibrium position, a force given by 30 sin 20t is applied on it. Find its position at time t and its velocity. Discuss the phase.	7.5 Marks
b)	Prove that $\phi = 5 \cos \theta + 10 \sin \theta$ - ct represents a wave in two directions which makes an angle θ with x-axis.	7.5 Marks
3. a)	Study the coupled oscillations in case of mono atoms system.	10 Marks
b)	Find the wavelength and the velocity of the two dimensions wave given by: $\varphi = 10 \sin (3x+4y-5t)$.	5 Marks
c)	A spring is hanged vertically from its upper end. Its lower end is connected by a mass of 3 kg. Then it is pulled down a distance of 1.5 cm from its steady state position, if the spring constant =k 1000N/ m. study its motion.	10 Marks

With our best wishes,

Dr. Safaa Abdel-Maksoud & Prof. Dr.A.Oraby

Mansoura University Faculty of Science Physics Department Subject: Physics

1st term Exam 2nd level Geophysics Date: January 2015 Time allowed: 2 hours

Course (s): Physics: Ac and electric circuits ph228

Full Mark: 60Mark

Answer the following Questions:

[1] a- A current waveform shown in figure below exists in a pure inductor of L=1 mh. Sketch the voltage waveform.

- b-1- Write down the necessary functional equations for the hybrid parameters of the 2-port network (V₁ and I₂).
 - 2- For the given one element circuit Find the h-parameters (matrix)

[2] Define each of the following:

- a-The cut off frequencies . b-The resonant frequency. c-The quality factor of a filter. (3
- b- Drive an expression for the voltage transfer function $H(s) = V_o/V_i$ for the given filter, Determine the filter parameters then express $|H(j\omega)|, < H(j\omega)$

[3]

For the given Network find: [Y] parameters and [Z] parameters Given that: (L=1H, C_1 = C_2 = 1 F)

(20)

Good luck

Dr. Aziza Atta

Mansoura University
Faculty of Science
Department of Geology

2nd Level, Geology & Geophysics Final exam, Petrology (G 203) Time allowed: **TWO Hours** Academic Year: 2015-2016

Date: 20/1/2016

Please answer ALL questions

1- Complete the missing parts in the following sentences (15)	marl	ks)
1- Phyllite is low-grade metamorphism of, or, or		
2- Volatiles of magma include,,		
3- Conglomerate is a that contains clasts. The space between the	: clast	is is
generally filled with and/or a chemical cement that binds the rock together.		
4- Light bands of gneiss include, whereas dark bands	s cont	ain
and		
5- Rhyolite is equivalent to; its texture is and may contain		of
orthoclase, mica and quartz.		
6- Pumice is highly and is of composition.		
7- Lopoliths are or concordant bodies with top and	. bott	om.
8- Matrix of sandstone is composed of whereas matrix of cong	glome	rate
includes		
9- Foliation of metamorphic rocks forms by		
10- Allochems of limestone include,,		
2- Tick ($\sqrt{}$) or (X) and correct the false sentences (15)	mar	ks)
1- Granitic magmas considered as secondary and highly evolved magma.	()
2- Thermal expansion is a significant form of mechanical weathering.	()
3- Matrix was deposited at the same time as the framework grains or infiltrated shortly after.	()
4- Sedimentary structures are formed after deposition of sediments.	()
5- Plate tectonic plays a minor role in the generation of most magma.	()
6- Laccolith is a discordant body with convex bottom and flat upward.	(
7- Hydrolysis is the reaction of any substance with water.	()
8- The migration of ripples, dunes and sand-waves gives cross-stratification.	()
9- Non-marine carbonates include chalk, limestone and oolitic limestone.	()
10- Non-foliated metamorphic rocks are composed of equidimensional grains.	()

(Flip the paper)

Mansoura University Faculty of Science Department of Geology

2nd Level, Geology & Geophysics Final exam, Petrology (G 203) Time allowed: **TWO Hours** Academic Year: 2015-2016

Date: 20/1/2016

3- Compare between each of the following (use drawing if it is possible) (15 marks)

- 1- Porosity and permeability.
- 2- Sandstone and limestone.
- 3- Phacoliths and lopoliths.
- 4- Granite and diorite.
- 5- Gneiss and phyllite.

4- Do as shown

(15 marks)

- 1- Migmatites. (Write short notes)
- 2- Tuff and volcanic breccia. (Give a short description)
- 3- Frost wedging. (Describe and illustrate with drawing)
- 4- Sedimentary rocks. (What can tell us?)
- 5- Heat can metamorphose rocks. (Determine sources of heat)

With my best wishes Dr. Tarek Anan

د. طارق إبراهيم عنان*

أ.د. أمين مصطفى غيث

لجنة التصحيح:

Final Exam : Jan., 2016 Course: GF-201

Time: 2 hours & Mark: 60

Answer the following questions:

Q1	: Mark (T) for the true and (F) for the wrong sentences AND correct the wrong: (20 Marks
1.	Station spacing should be greater than the depth of the body of interest ()
	Correction:
2.	Gamma = 10^{-9} Tesla = 10^{-5} Gauss = nT. ()
	Correction:
3.	The inducing magnetic field is much smaller than the anomalous magnetic field. (
	Correction:
4.	The value of gravity acceleration of anybody on the earth is a function of mass. (
	Correction:
5.	The effect of rotation of the earth on gravitational acceleration is maximum at poles. (
	Correction:
6.	Accurate topographical map is very necessary in gravity prospecting. ()
	Correction:
7.	1 gu = $0.1 \text{ mgal} = 10^{-6} \text{ m/s}^2$. ()
	Correction:
8.	Gravitational potential is due to dipole effect. (
	Correction:
9.	g is a scalar field while U is a vector. ()
	Correction:
10	. Free-air anomaly map is similar to topography. ()
	Correction:
11	. Resistivity of the dry sand is higher than the resistivity of clay. (
	Correction:
12	. Derivative filters are used to enhance small scale anomalies. ()
	Correction:
13	. One VES-curve can detect vertical dyke. ()
	Correction:

Q2	: Complete: (20 Marks)
1.	Types of resistivity surveys include
2.	Near surface ferruginous sandstone the underline magnetic anomalies.
3.	Gravity methods measure thecontrast while magnetic methods
	measure the contrast in
4	$(\Delta g_F) = \dots$
5.	Bougeur correction (C _B) = while bougeur anomaly
	$(\Delta g_B) = \dots$
6.	Approximate Gravity anomaly for horizontal slab $z = \dots$
	RTP-technique is used to
8.	The main physical ideas behind measuring gravity acceleration are
	and
9.	The general equation of gravity Anomaly Over a Buried bodies of complex =
10.	. Igneous rocks always have density that sedimentary rocks.
	. The value of inclination at the magnetic equator is equal to and the magnetic
	field is directed
12	. Saline water has a resistivity valuesthan fresh water.
	. Basaltic intrusion gives magnetic anomaly.
	. The general formula of determining resistivity of the earth for a four electrodes system is
	The general recommendation of the ge
-	
Q3	3: (20 marks)
	Starting with the gravitational acceleration due to a point mass, deduce the gravitational
	celeration over bodies of more complex shapes. (5 marks)
act	celeration over bodies of more complex shapes. (5 marks)

	Li
o- Explain with drawing how to use Schlumberger electrode array to obtain VES data: (5 M)	
o- Explain with drawing how to use Schlumberger electrode array to obtain VES data: (5 M)	
o- Explain with drawing how to use Schlumberger electrode array to obtain VES data: (5 M)	
o- Explain with drawing how to use Schlumberger electrode array to obtain VES data: (5 M)	
o- Explain with drawing how to use Schlumberger electrode array to obtain VES data: (5 M)	
	•

	·
•	

	······································
	,
	· · · · · · · · · · · · · · · · · · ·
	······································
	c- Discuss TWO of the following: (10 marks, 5 for each)
	o blooded two of the following to the market of other dadity
	Measuring gravitational acceleration.
	Measuring gravitational acceleration. Fluxgate magnetometer.
	Measuring gravitational acceleration.
	Measuring gravitational acceleration. Fluxgate magnetometer.
	 Measuring gravitational acceleration. Fluxgate magnetometer. The noises in resistivity data and how can be eliminated.
	 Measuring gravitational acceleration. Fluxgate magnetometer. The noises in resistivity data and how can be eliminated.
	 Measuring gravitational acceleration. Fluxgate magnetometer. The noises in resistivity data and how can be eliminated.
	 Measuring gravitational acceleration. Fluxgate magnetometer. The noises in resistivity data and how can be eliminated.
	 Measuring gravitational acceleration. Fluxgate magnetometer. The noises in resistivity data and how can be eliminated.
	 Measuring gravitational acceleration. Fluxgate magnetometer. The noises in resistivity data and how can be eliminated.
	1. Measuring gravitational acceleration. 2. Fluxgate magnetometer. 3. The noises in resistivity data and how can be eliminated.
	1. Measuring gravitational acceleration. 2. Fluxgate magnetometer. 3. The noises in resistivity data and how can be eliminated.
	1. Measuring gravitational acceleration. 2. Fluxgate magnetometer. 3. The noises in resistivity data and how can be eliminated.
	1. Measuring gravitational acceleration. 2. Fluxgate magnetometer. 3. The noises in resistivity data and how can be eliminated.
	1. Measuring gravitational acceleration. 2. Fluxgate magnetometer. 3. The noises in resistivity data and how can be eliminated.
	1. Measuring gravitational acceleration. 2. Fluxgate magnetometer. 3. The noises in resistivity data and how can be eliminated.
	1. Measuring gravitational acceleration. 2. Fluxgate magnetometer. 3. The noises in resistivity data and how can be eliminated.

<u></u>	
······································	
······································	
	
	
	••
	••
·	
<u> </u>	

END OF EXAM

Best Wishes: Dr. Ahmed ElGalladi