25 30 25 | Mansoura University | Second Level (Physics) | |---------------------|------------------------| | | Themodynamics (Ph210) | | Physics Department | Time (2hrs) | | Jan. 2016 | Full marks, 80 | - 1. a) If T is a function of P and V, Find dT in terms of the coefficient of volume expansion β and isothermal compressibility K. - b) For an ideal gas of one atom molecule with constant heat capacities, find the entropy as a function of temperature and pressure and calculate the change in entropy if the gas is heated from 27 °c to 327 °c while pressure drops from 300 to 150 N/m² (R=8.3 Joule/mole K). - 2. An ideal gas c_p =29.6 Joule/mole K, temperature 277 °c and pressure $5x10^6$ N/m² the gas expands adiabatically to pressure 10^6 N/m² and then heated at constant volume to temperature 277 °c and finally the gas compressed isothermally back to its initial condition. - a) Find the cycle on (P-V) and on (T-S) diagrams. - b) Find the quantity of heat for each process of the cycle and calculate the efficiency of the cycle. - c) Calculate the work and the change of entropy of the gas for each of the three processes. - 3. a) Using the fact that Gibbs function remains constant during a reversible process taking place at constant temperature and pressure, deduce the Clausis-Clapeyron equation. - b) Deduce the first and the second TdS equation and then find the energy equation. - c) Find $(\partial u/\partial v)_T$ for a Van der waals gas and find the internal energy in this case. With my best wishes Dr. Anwar Megahed دور: يناير 2016 الزمن: ساعتان التاريخ : 1/3 /2016 كلية العلوم - قسم الرياضيات الفرقة: المستوى الثاني المادة: جبر خطى وهندسة كود المادة: (ر203) البرنامج: فُيزياء الدرجة الكلية : 80 أجب عن الأسئلة الآتية: 1-أ) باستخدام طريقة جاوس - جوردان حل مجموعة المعادلات: $$x_1 - 2x_2 - x_3 - 2x_4 = 0$$, $2x_1 - 5x_2 - 2x_3 - 5x_4 = -1$ $$3x_1 - 5x_2 - 2x_3 - 3x_4 = 1$$, $-x_1 + 4x_2 + 4x_3 + 11x_4 = 2$ ب) اذا كانت $$p_1(1,-1,12)$$, $p_2(0,1,-1)$, $p_3(3,-4,1)$. اوجد معادلة المستوى بانقطة p_1 ويكون عموديا على $p_1(1,-1,12)$. الذي يمر بالنقطة p_2 ويكون عموديا على $p_3(1,-1,12)$ 2- أ) عرف كل من : الاستقلال الخطى - الأساس و البعد للفراغ الاتجاهى ب) حدد ما إذا كانت الفئة $$\{V_1,V_2,V_3\}$$ تكون أساسا للفضاء $S=\{V_1,V_2,V_3\}$ أم لا؟ حيث $V_1=(1,2,3)$, $V_2=(0,1,2)$, $V_3=(-2,0,1)$ $$i$$) $\det(A^{-1}) = \frac{1}{\det(A)}$: نفرض أن A مصفوفة مربعة وقابلة للانعكاس اثبت ان A $$(ii)$$ $A^{-1} = 3I - A$ فان $A^2 - 3A + I = 0$ وإذاكانت A تحقق A تحقق وإذاكانت A تحقق $$A = \begin{bmatrix} 2 & 3 & 1 \\ 3 & 3 & 1 \\ 2 & 4 & 1 \end{bmatrix}$$ اوجد المعكوس للمصفوفة (أ -3 ثم اوجد حل نظام المعادلات: $$2x+3y+z=0$$, $3x+3y+z=0$, $2x+4y+z=0$ ب) اوجد طول و معادلة العمود النازل من النقطة (1-,2,1) على المستوى $$2x + y - 2z + 3 = 0$$ 2 درجة) $$\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$$, $\frac{x-2}{3} = \frac{y-3}{4} = \frac{z-4}{5}$ يتقاطعان واوجد نقطة التقاطع والزاوية بينهما و معادلة المستوى الذي يحتويهما . ب) عرف الفراغ الخطى الجزئي من فراغ اتجاهى. ثم بين ما اذا كانت الفئة W فراغ جزئي $$W = \{ (a, b, 0), a, b \in R \}$$ من R^3 ام R^3 ام R^3 ام لا R^3 جیث Mansoura University **Faculty of Science** Physics Department Subject: Physics 2nd Level, 1st Term Credit Hour Students: Physics Date: 13 January 2016 Time allowed: 2 hours Course: Physics 212, Meteorology & Astronomy Full Mark: 80 Mark | Answer the 1st question, then any other two questions | | |--|-------------------------------------| | [1] a- Derive the orbital potential energy equation for the orbit of a bod under the effect of a central force, when $r \neq r(\theta)$ | y moves
[10] Marks | | b- A body moves under the effect of central force in an orbit of radio | us is given | | by $r = 2a \cos \theta$, determine: | | | i- The potential energy V(r), | [10] Marks | | ii- The force $F(r)$. | [5] Marks | | c- Calculate the mass of Sun using the facts that the distance between the Sun is 150 x 10 ⁶ Km and earth revolution time is 365 days. | earth and [5] Marks | | $[G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ Kgm}^{-2}]$ | [2] Maules | | [2] a- State Kepler's 1st law. b- Define the Eccentricity. c- Using the definition of the Eccentricity derive Kepler's 1st law. | [3] Marks
[7] Marks
[7] Marks | | d- Define each of the following: | [8] Marks | | i- Dynamic meteorology. ii- Synoptic meteor | ology. | | iii- Agricultural meteorology. iv- Climatology. | | | [3] a- For El-Mansoura of latitude 31°N, on 13 of January, Calculate: i-The declination angle. ii-The zenith angle, at 10:00 LAT. iii-The time of sunrise iv-The day length. b-The density of the atmosphere depends on the temperature and on the Discuss this phrase with deriving the corresponding equations. | [12] Marks he altitude. [13] Marks | | | . , | | [4] a- Mercury has no atmosphere. Discuss this phrase. | [9] Marks | | b- The weather is affected by atmospheric parameters. Discuss this giving the names of at least 5 instruments are used for measuring th parameters. | k i | | c- Calculate the distance between the earth and the sun at "13" of Ja 1 st of October if the AU=150 x 10 ⁶ Km. Good Luck | nuary and
[8] Marks | Examiners: 1- Prof. Dr. Magdy Tadros Yacoub* 2- Dr. Hamed Ibrahim Mansoura University Faculty of Science Physics Departement Subject: Introduction to Biophysics Course code: biophys221 First Term, Final Exam 2nd Students Time Allowed: 2 h. Date: 20/1/2016 Full Mark: 80 Mark # Answer all the following questions | I-Write short | notes about | each of | the followings: | |----------------|-----------------|----------|---------------------| | T AATTER RUDIE | BELLARY CALACTE | Calli Ci | OCINENTA CAROLA CAR | - a) Cobalt 60 and linear accelerator - c) Classification of light atom interaction - b) Ion distribution in cell membrane - e) Acoustic impedance - f) Transducer - g) Equivalent Circuit Model for the Plasma Membrane - h) Treatment planning software - d) Compton Effect ### II-Choose the correct answer from the followings: - 1) The process in which α and β rays pass close to atoms and knocks the electrons out is called: - a) Ionization b) Ionisation b) Decay - d) None of above - 2) The sound that emanates from a piezoelectric transducer originates: - a) From a point on the active surface - b) From most of the active surface - c) From a small area in the center of the active surface - d) From the edges of the active surface - 3) Period is determined by: - a) Sound source b) Medium - c) Both - 4) The time it takes a wave to vibrate a single cycle, or time from the start of a cycle to the start of the next cycle: | a) Period | b) Frequency | | |--|---|--------------------------------| | c) Wavelength | d) Speed | | | e) Power | | | | 5) Which of the following ions | s are involved in neuronal action | potentials? | | a) Na ⁺ | b) K + | | | c)Cl | d) A and B only | | | e) A, B, and C | | | | 6) At what membrane voltag activated` | ge do neuronal voltage-gated Na | n ⁺ channels become | | a) -70 mV | b) -55 mV | | | c) 0 mV | d) +55 mV | | | 7) At what membrane voltag activated? | ge do neuronal voltage-gated K | + channels become | | a) -70 mV | b) -55 mV | | | c) 0 mV | d) -90 mV | | | 8) The hyperpolarization phase | se of the action potential: | | | a) Is due to the opening of vol | tage-gated Cl– channels | • | | b) Is due to the prolonged ope | ning of voltage-gated K+ channe | els | | c) Is due to the closure of resti | ing Na+ channels | or radio | | d) None of the above | | | | 9) What is a major health con- | cern wth MRI? | | | a) Reaction to applied drug | b) extrerme cold? | | | c) Radiation dose | d) localized burns due to | metallic implants? | | 10) Uses high doses of radiation precisely to avoid damaging h | on to kill cancer cells and shrin
ealthy brain tissue. | k tumors, delivered | | a) Radiation therapy | b) Ionizing radiation | | | c) X-ray | d) Radiosurgery | | | 11) Which of the following is R | IOT true about the neuronal act | tion notontials | | a) Action potentials are all-or-nothing. | |--| | b) Action potentials travel along axons in a non-decremental fashion. | | c) Repolarization and hyperpolarization are due to the activity of K+ channels. | | d) All of the above are true about action potentials. | | 12) Which of the following is NOT a source of background radiation? | | a) Radiation from Naturally occurring unstable isotopes. | | b) Radiation from a Source being measured. | | c) Radiation from Space. | | d) Radiation from Human Activity. | | 13) Which of the following types of radiation can enter living cells and cause ionization, thus damaging or destroying the cell? | | a) Gamma. b) Alpha and Beta. | | c) Beta and Gamma. d) Alpha, Beta and Gamma. | | 14) Where does radiation come from? | | a) An electron b) An atom. | | c) A stable nucleus d) An unstable nucleus which decays. | | 15) Which type of radiation would be stopped by a few millimetres of aluminium, but not by paper? | | a) Gamma. b) Infra-red. | | c) Alpha d) Beta. | | III-Write the scientific expression: | | a) The component of the ultrasound imaging equipment that is placed in direct contact with the patient's body(). | | b) Conversion of electrical energy to mechanical energy and vice versa (). | | c) Nerves that communicate messages between the central nervous system and the rest of the body nerves that communicate messages between the central nervous system and the rest of the body(). | | | - d) Places radioactive material into tumor or surrounding tissue(- e) The action potential goes past -70 mV because the potassium channels stay open a bit too long(). - f) A pair of reflecting surface of which one is a perfect reflector and the other is a partial reflector(). مع تمنياتي بالتوفيق د/أمل الشهاوي Mansoura University Faculty of Science Physics Department Elastic Physics (PHYS215) Time: 2 hours Physics+BioPhysics(2nd level) Final Term Exam, (2015-2016) Marks: 80 #### Answer the following questions - Q1- a) Define: Shear stress, modulus of rigidity, Ductile and brittle fracture, Intergranular and transgranular fracture, Compressibility, Poisson's ratio. - Q1- b) What types of imperfections in solids and how do defects affect material properties, are defects undesirable or not? - Q1- c) A 30 cm long glass fiber of diameter 0.05 mm is broken when exposed to atmosphere for 6 hours. The breaking load is estimated to be 0.16 N. Given Y = 7×10^{10} N.m⁻² and $\gamma = 0.6$ J.m⁻². Calculate the following: a) Fracture stress, b) Crack depth, c) Stress at the tip of the crack assuming tip radius to be 1.5 Å just prior to fracture. - Q2- a) Distinguish between Frenkel defect and Shottky defect? - Q2 b) A sheet of copper 0.750 m long, 1.00 m high, and 0.500 cm thick is acted on by a tangential force of 50,000 N. The value of S for copper is 4.20 × 10¹⁰ N/m². Find (a) the shearing stress, (b) the shearing strain, and (c) the linear displacement Δx. - Q2- c) During the manufacturing process should avoid sharp corners, why? # Q3-a) Explain; - i- Cracks with sharp tips propagate easier than cracks having blunt tips. - ii- Ductile-to- brittle transition temperature. - Q3 b) Define: Fatigue, high cycle fatigue, fatigue limit, fatigue strength, and fatigue life. - Q3- c) Find the number of vacancy concentration in 1 cm³ of Cu at 1000 °C. Given; p=8.4 g/cm³, A_{Cu} =63.5 g/mol., Q_v =0.9 eV/atom , N_A =6.02 x 10²3 atoms/mol, $K = 8.62 \times 10^{-5}$ eV/atom. - Q4- a) Clarify; stages of fatigue failure, creep, stages of creep, mechanisms of creep - Q4- b) What are the factors that affect fatigue life and how to solve? - Q4- c) Discuss and draw the relation between *stress amplitude* and *number of cycles to failure* (S-N curves) for Fe and Al. With my best wishes Prof. Dr. Rizk Mostafa Ibrahim | University Faculty of Science Physics Department Level (2) code F211 Physics and Biophysics Physics | |--| |--| ### Section 1: Physics (Answer 3 questions only) - 1- Find reflectance coefficient of wave in two connected wires with different density of unit length - 2- Prove that the velocity of wave in gas makes an adiabatic change. - 3- Find the condition to obtain a circle as a result of the superposition of to normal waves. - 4- A) Prove that the amplitude of damping oscillator depends on time. - 4- b) Prove that the total energy of simple harmonic motion is constant. ## Section 2: Biophysics (Answer 3 questions only) - 1- a) Find the wavelength and the velocity of two dimensions wave given by $\phi = 10 \sin(2x-2y-3t)$ - b) A spring is hanged vertically from its upper end. Its lower end is connected by a mass of 9 Kg. Then it is pulled down a distance of 2 cm from its steady state position. If the spring constant = 1000 N/m, study its motion. - 2- a) Prove that the total energy of light damped simple harmonic motion decreases exponentially. - b) Define the following: i) The periodic time ii) the frequency iii) the wave number iv) the wavelength v) the amplitude of the wave. - 3- a) Study the coupled oscillations in case of mono atoms system. - b) Study the energy of free simple harmonic oscillation in an electric system. - 4- a) Study the superposition of two perpendicular vibrations having the same frequency but differ in the amplitude and phase. - b) Study the oscillation of stationary wave.