Postgraduate Diploma in Radiation Physics

The Diploma in Radiation Physics Program aims to:

- 1. Provide students with the knowledge and different techniques for applied radiation in medicine, unclear safety and radiation protection.
- 2. Diploma granted under the license of a health physicist and the Egyptian Ministry of Health made available to the student to deal with different types of radiation .
- 3. Enable students to design different shielding for different types of radiation in the positions which use the source of radiation.
- 4. Supply the student the various biological effects of radiation on biological systems and the surrounding environment.
- **5.** Provide students with the basic of quality control for the devices and in medicine and industry.

هيكل و مكونات البرنامج :

عدد الساعات المعتمدة	عدد المقررات	نوع المقرر	الكود
24	يدرس الطالب عدد (12) مقررا المبينة في الجدول	اجباری	Phys500 & Phys600
		اختيارى	ف500- ف600
24	اجمالى عدد الساعات المعتمدة المطلوبة		

المقررات الإجبارية Compulsory Courses

ملاحظات	عدد الساعات المعتمدة	عملی	نظری	اسم المقرر	كود المقرر	الفصل الدراسي
	2	-	2	قياسات إشعاعية ودوزومترية	Phys669	يفا ملي

			Radiation Dosimetry	ف669	
2		2	الرياضيات الحيوية	Dby c624	
	-		الرياضيت الحيوية	Phys621	
			Mathematical Biology	ف621	
2	-	2	فيزياء العلاج الاشعاعى	Phys515	
			Physics of Radiation Therapy	ف515	
2	-	2	فيزياء صحية	Phys666	
			Health Physics	ف666	
2	-	2	تشریح و فسیولوجی	Phys516	
			Anatomy and Physiology	ف516	
2	-	2	فيزياء الاشعة التشخيصية (1)	Phys661	
			Physics of Diagnostic Radiations	ف-661	
			(1)		
2	-	2	قياسات ضوئية	Phys651	
			Optical Measurements	ف651	
2	-	2	بيولوجيا ووقاية إشعاعية	Phys517	
			Radiobiology and Radiation Protection	ف-517	
2	-	2	الاحصاء التجريبي والنمذجه	Phys650	
			Experimental Statistical	ف650	القصل
2	-	2	التصوير الاشعاعي المقطعي	Phys518	للدراسة
			Topographic Imaging	ف518	الفصل الدراسى الثانى
2	-	2	فيزياء الاشعة التشخيصية (2)	Phys664	,
			Physics of Diagnostic Radiations	ف664	
			(2)		
2	-	2	معالجة الصور	Phys519	
			Image Processing	ف519	

Contents

Health Physics Course_666Phys

Introduction to Interaction of Radiation with Matter

Beta Particles - Alpha Particles - Gamma Rays - Neutrons

Radiation Dosimetry

Units - External Exposure - Internally Deposited Radionuclides - External Exposure: Neutrons

Biological Basis for Radiation Safety

Dose–Response Characteristics - The Physiological Basis for Internal Dosimetry - Radiation Effects: Deterministic - Radiation Effects: Stochastic - Radiation-Weighted Dose Units: The Sievert and The Rem

Radiation Safety Guides

Organizations That Set Standards - Philosophy of Radiation Safety - ICRP Basic Radiation Safety Criteria - United States Nuclear Regulatory Program - Ecological Radiation Safety

Health Physics Instrumentation

Radiation Detectors - Particle-Counting Instruments - Dose-Measuring Instruments Neutron Measurements - Calibration - Counting Statistics

External Radiation Safety

Basic Principles - Optimization

Internal Radiation Safety

Internal Radiation - Principles of Control - Surface Contamination Limits - Waste Management Assessment of Hazard - Optimization

Criticality

Criticality Hazard - Nuclear Fission – Criticality - Nuclear Reactor - Criticality Control - **Required**

- 1- Herman Cember, and Thomas E. Johnson, Introduction to Health Physics, Fourth Edition, The McGraw-Hill Companies, 2009.
- 2- Khan, Faiz M, and John P. Gibbons the physics of radiation therapy, Fifth edition, Lippincott Williams & Wilkins, A Wolters Kluwer Business, 2014.
- 3- Jacob Van Dyk, The Modern Technology of Radiation Oncology, A Compendium For Medical Physicists And Radiation Oncologists, Library of Congress Cataloging-in-Publication Data, 1999.

Mathematical Biology (Phys 610)

- Introduction to Mathematical Biology
- Dimensional analysis
- Linear growth equation

- Linear growth population
- Exponential growth population
- Logistic growth model
- Voltera model of single species
- Deterministic and Stochastic models of Epidemiology

References

- J. D. Murray, Mathematical Biology: I. An Introduction (2002).
- A. Morega, M. Morega, A. Dobre, Computational Modeling in Biomedical Engineering and Medical Physics (2020).

Physics of diagnostic radiation (1) phys 661

- 1. Interaction of X-Rays and Gamma Rays with Matter
- 2. Interaction of electrons with matter
- 3. Production of X-Rays
- 4. Radiographic image of the x-ray

References:

1. Physics for diagnostic radiology

Third Edition

Pp Dendy, B Heaton

2. Diagnostic radiology physics

Hand book (IAEA)

D.R.Dance

S. Christofides

I.D.Mclean

K. H. Ng

Physics of Radiotherapy Treatment -Phys 515

- Structure of matter and radioactivity.
- Classification of radiation and its origin.
- Types of photon matter interaction.

- Biological effects of radiation: Somatic and hereditary effects in humans, long and short –term somatic effects, radiation induced cancer, dose response curve.
- Effect of acute dose to specific organs or tissues: skin, blood, reproductive system, thyroid, eye and central nervous system.
- Treatment planning.
- Radiation therapy treatment parameters.
- Radiotherapy Treatment devices: EBT, IGRT, IMRT, VMAT, CT/CAT, PET and MRI.

Radiation measurements and Dosimetry-Phys 669

- Contents
- Classification of Radiation.
- 1. Electromagnetic radiation
- 2. Particulate radiation
- 3. Ionizing and non-ionizing radiations.
- Stopping power in compounds and mixtures Linear energy transfer (LET)
- Radiation quantities and Units- Introduction and Overview. Radiation Units
- Conventional Units -SI Unit Specific Quantities and Their Associated Units
- - Photon Concentration (Fluence), A Factor in Image Quality
- Energy, Exposure- Air Kerma- Surface Integral Exposure -Dose Area Product - Absorbed Dose
- -Computed Tomography (CT) Dose Index Mammography Mean Glandular Dose - Integral Dose - Computed Tomography Dose Length Product - Dose Equivalent - Effective Dose - Tissue Weighting Factors

Dosimetry

- Introduction and Overview- Direct & Indirect monitoring -What is Dosimetry?
- 1. Personal dosimetry
- 2. Indirect monitoring using measured dose rates or airborne concentrations of nuclear substances
- 3. Indirect monitoring using environmental pathways analysis
- 4. Dose Concepts
- About dose limits Limits on effective doses Prescribed Effective & Equivalent Dose Limits - External Dosimetry –
- About Dosimeters:

- - General characteristics- Choosing a dosimeter- Dosimeter type testing
- Dosimetry for photon and beta radiation Thermoluminescent dosimeters (TLDs)
- Instrumentation for Dosimetry
- Radiation detectors and dosimeters –
- 1. General characteristics of radiation detectors
- 2. Properties of diagnostic radiology dosimeters Sensitivity, Linearity, Energy dependence, Leakage Current.
- 3. Ionization chambers
- Clinical application of ionization chambers- Chambers for air kerma (dose) measurements - Cylindrical pencil type chambers - KAP (kerma area product) chambers
- 4. Semiconductor dosimeters
- 5. Film dosimetry: Radiographic film and radiochromic film
- 6. (OSL dosimeter)
- Dosimetric applications of TLD and OSL- Dosimeter Calibration –
 Shielding Gamma Rays & Exposure Rate- Basic principles of radiation protection Gamma Rays Attenuation & Half Value Layer Solved Examples

References

- Radiation detection and measurement Knoll Cited by 17365
- Radiation Dosimetry: Physical and Biological Aspects C.G. Orton
- Introduction to Radiation Protection Dosimetry Baoshan Weng & Jozef Sabol

Phys. 650: Experimental Statistics and Modeling

Contents

1. Dynamic Modeling with Difference Equations

- 1.1. The Malthusian Model
- 1.2. Nonlinear Models
 - 1.2.1. Creating a nonlinear model
- 1.2.2. Iterating the model
- 1.2.3. Cobwebbing
- 1.3. Analyzing Nonlinear Models
 - 1.3.1. Transients, equilibrium, and stability
 - 1.3.2. Linearization
- 1.4. Variations on the Logistic Model
- 1.5. Comments on Discrete and Continuous Models

2. Linear Models of Structured Populations

- 2.1. Linear Models of Structured Populations
 - 2.1.1. Populations with distinct age groups

3. Nonlinear Models of Interactions

- 3.1. A Simple Predator-Prey Model
- 3.2. Equilibria of Multi-population Models
- 3.3. Linearization and Stability
- 3.4. Positive and Negative Interactions
 - 3.4.1. Competition model
 - 3.4.2. Immune system vs. infective agent
 - 3.4.3. Mutualism model

References

- 1. Allman E. S., Rhodes J. A., *Mathematical Models in Biology: An Introduction* (Cambridge University Press, Cambridge, 2004)
- 2. Murray J. D., *Mathematical biology: An introduction*-3rd edition (Springer-Verlag, Berlin, 2002)

Course Title: Image Processing -Phys 519 Course content:

- Introduction Elements of digital image processing Image model Sampling and quantization Relationships between pixels
- Image Transforms Discrete Fourier Transform Discrete Cosine Transform - Haar Transform - Hadamard Transform
- Image Enhancement Enhancement by point processing Spatial filtering Enhancement in the frequency domain Color Image Processing
- Image Segmentation Discontinuity detection Edge linking and boundary detection Thresholding Region oriented segmentation
- Representation and Description Boundary description Regional description
- Morphological Image Processing Dilation and Erosion Opening and Closing Some basic morphological algorithms Extensions to gray level images

Module references -

- R. C. Gonzalez and R. E. Woods, "Digital Image Processing". Pearson-Prentice-Hall, 2008.
- Al Bovik (ed.), "Handbook of Image and Video Processing", Academic Press, 2000.
- A.K. Jain, "Fundamentals of Digital Image Processing", Prentice-Hall, Addison-Wesley, 1989.
- M. Petrou, P. Bosdogianni, "Image Processing, The Fundamentals", Wiley, 1999.
- P.Ramesh Babu, Digital Image Processing. Scitech Publications., 2003
- Bernd Jähne, Digital Image Processing, Springer-Verlag Berlin Heidelberg 2005.
- B. Jähne, "Practical Handbook on Image Processing for Scientific Applications", CRC Press, 1997.
- J. C. Russ. The Image Processing Handbook. CRC, Boca Raton, FL, 4th edn., 2002.

- J. S. Lim, "Two-dimensional Signal and Image Processing" Prentice-Hall, 1990. Rudra Pratap, Getting Started With MATLAB 7. Oxford University Press, 2006
- W. K. Pratt. Digital image processing, PIKS Inside. Wiley, New York, 3 rd , edn., 2001.
- Stephane Marchand-Maillet, Yazid M. Sharaiha, Binary Digital Image Processing, A DiscreteApproach, Academic Press, 2000

Course name: Optical Measurements 651 Phys

- Course main subject: Colour measurements
- Course subtitles:
 - 1 Colour Perception
- 2 Colour Measurement
- 3 Colour Scales
- 4 Surface Characteristics and Geometry
- 5 Sample Preparation and Presentation
- References:
 - 1 www.hunterlab.com
 - 2 Stiles. "Colour Science: G. Wyszecki and W. S. Concepts and *Methods*, **Quantitative** Data and Formulae", 2nd ed. (John Wiley & Sons, New York, 1982).

Physics of diagnostic radiation(2) phys 664

- 1. Tomographic Imaging with X-Rays
- 2. Diagnostic Imaging with Radioactive Materials
- 3. Diagnostic Ultrasound

References

3. Physics for diagnostic radiology

Third Edition

Pp Dendy, B Heaton

4. Diagnostic radiology physics

Hand book (IAEA)

D.R.Dance

S. Christofides

I.D.Mclean

Radiobiology and Radiation Protection - Phys517

Nature and Origin of Radiation

Electromagnetic radiation, Particle radiation, Decay law, Radiation and dosimetry units, Interaction of radiation with matter and Natural radioactivity.

• Biological Effects of Radiation

Conditions of the radiation exposure, Energy loss effects, Dose response curves, Direct and indirect action of radiation,

• Principles of Radiation Protection

Justification and justification of medical practices, Optimization of protection and medical practices, Dose limitation, International basic safety standards

Radiation Monitors

Servey and personal monitors

Topographic Image course _518 Phys:-

1. Chapter one:

Introduction

2. Chapter two:

Classification of Radiation: electromagnetic, ionizing, and non-ionizing radiations.....

3. Chapter three:

X-ray production: tube, anode, and hounse field units.....

4. Chapter four:

Interactions of radiation with matter: photoelectric effect, Compton scattering, and pair production.....

5. Chapter five:

The CT imaging system: gantry, table, generator, and detectors.....

6. Chapter six:

Image reconstruction and processing

7. Chapter seven:

CT image quality

References:-

1. Diagnostic Radiology Physics:

By; D.R. Dance, et.al.

2. Basic physics of nuclear medicine:

By; Kieran Maher.

3. The essential physics of medical imaging $(3^{rd}$ edition):

By; Jerrold T. Bushberg, et.al.